Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcn Structured version   Visualization version   GIF version

Theorem opelcn 9829
 Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelcn (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))

Proof of Theorem opelcn
StepHypRef Expression
1 df-c 9821 . . 3 ℂ = (R × R)
21eleq2i 2680 . 2 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 opelxp 5070 . 2 (⟨𝐴, 𝐵⟩ ∈ (R × R) ↔ (𝐴R𝐵R))
42, 3bitri 263 1 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ⟨cop 4131   × cxp 5036  Rcnr 9566  ℂcc 9813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044  df-c 9821 This theorem is referenced by:  axicn  9850
 Copyright terms: Public domain W3C validator