MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmindif2 Structured version   Visualization version   GIF version

Theorem onmindif2 6904
Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
onmindif2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))

Proof of Theorem onmindif2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4260 . . . 4 (𝑥 ∈ (𝐴 ∖ { 𝐴}) ↔ (𝑥𝐴𝑥 𝐴))
2 onnmin 6895 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
32adantlr 747 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
4 oninton 6892 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
54adantr 480 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ∈ On)
6 ssel2 3563 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
76adantlr 747 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ On)
8 ontri1 5674 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
9 onsseleq 5682 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
108, 9bitr3d 269 . . . . . . . . . 10 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
115, 7, 10syl2anc 691 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
123, 11mpbid 221 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ( 𝐴𝑥 𝐴 = 𝑥))
1312ord 391 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥 𝐴 = 𝑥))
14 eqcom 2617 . . . . . . 7 ( 𝐴 = 𝑥𝑥 = 𝐴)
1513, 14syl6ib 240 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥𝑥 = 𝐴))
1615necon1ad 2799 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 𝐴 𝐴𝑥))
1716expimpd 627 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ((𝑥𝐴𝑥 𝐴) → 𝐴𝑥))
181, 17syl5bi 231 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ (𝐴 ∖ { 𝐴}) → 𝐴𝑥))
1918ralrimiv 2948 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥)
20 intex 4747 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21 elintg 4418 . . . 4 ( 𝐴 ∈ V → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2220, 21sylbi 206 . . 3 (𝐴 ≠ ∅ → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2322adantl 481 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2419, 23mpbird 246 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  wss 3540  c0 3874  {csn 4125   cint 4410  Oncon0 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator