MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Structured version   Visualization version   GIF version

Theorem ondif2 7469
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2 (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜𝐴))

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3550 . 2 (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2𝑜))
2 1on 7454 . . . . 5 1𝑜 ∈ On
3 ontri1 5674 . . . . . 6 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜 ↔ ¬ 1𝑜𝐴))
4 onsssuc 5730 . . . . . . 7 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜𝐴 ∈ suc 1𝑜))
5 df-2o 7448 . . . . . . . 8 2𝑜 = suc 1𝑜
65eleq2i 2680 . . . . . . 7 (𝐴 ∈ 2𝑜𝐴 ∈ suc 1𝑜)
74, 6syl6bbr 277 . . . . . 6 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜𝐴 ∈ 2𝑜))
83, 7bitr3d 269 . . . . 5 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (¬ 1𝑜𝐴𝐴 ∈ 2𝑜))
92, 8mpan2 703 . . . 4 (𝐴 ∈ On → (¬ 1𝑜𝐴𝐴 ∈ 2𝑜))
109con1bid 344 . . 3 (𝐴 ∈ On → (¬ 𝐴 ∈ 2𝑜 ↔ 1𝑜𝐴))
1110pm5.32i 667 . 2 ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜𝐴))
121, 11bitri 263 1 (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383  wcel 1977  cdif 3537  wss 3540  Oncon0 5640  suc csuc 5642  1𝑜c1o 7440  2𝑜c2o 7441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-suc 5646  df-1o 7447  df-2o 7448
This theorem is referenced by:  dif20el  7472  oeordi  7554  oewordi  7558  oaabs2  7612  omabs  7614  cnfcom3clem  8485  infxpenc2lem1  8725
  Copyright terms: Public domain W3C validator