Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllat Structured version   Visualization version   GIF version

Theorem omllat 33547
 Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omllat (𝐾 ∈ OML → 𝐾 ∈ Lat)

Proof of Theorem omllat
StepHypRef Expression
1 omlol 33545 . 2 (𝐾 ∈ OML → 𝐾 ∈ OL)
2 ollat 33518 . 2 (𝐾 ∈ OL → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ OML → 𝐾 ∈ Lat)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  Latclat 16868  OLcol 33479  OMLcoml 33480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-ol 33483  df-oml 33484 This theorem is referenced by:  omllaw2N  33549  omllaw4  33551  omllaw5N  33552  cmtcomlemN  33553  cmt2N  33555  cmtbr2N  33558  cmtbr3N  33559  cmtbr4N  33560  lecmtN  33561  cmtidN  33562  omlfh1N  33563  omlfh3N  33564  omlmod1i2N  33565  omlspjN  33566
 Copyright terms: Public domain W3C validator