Step | Hyp | Ref
| Expression |
1 | | omllaw.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | omllaw.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | omllaw.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
4 | | omllaw.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
5 | | omllaw.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
6 | 1, 2, 3, 4, 5 | isoml 33543 |
. . . 4
⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) |
7 | 6 | simprbi 479 |
. . 3
⊢ (𝐾 ∈ OML → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) |
8 | | breq1 4586 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) |
9 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
10 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑋)) |
11 | 10 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑦 ∧ ( ⊥ ‘𝑥)) = (𝑦 ∧ ( ⊥ ‘𝑋))) |
12 | 9, 11 | oveq12d 6567 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))) = (𝑋 ∨ (𝑦 ∧ ( ⊥ ‘𝑋)))) |
13 | 12 | eqeq2d 2620 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))) ↔ 𝑦 = (𝑋 ∨ (𝑦 ∧ ( ⊥ ‘𝑋))))) |
14 | 8, 13 | imbi12d 333 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) ↔ (𝑋 ≤ 𝑦 → 𝑦 = (𝑋 ∨ (𝑦 ∧ ( ⊥ ‘𝑋)))))) |
15 | | breq2 4587 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) |
16 | | id 22 |
. . . . . 6
⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) |
17 | | oveq1 6556 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑦 ∧ ( ⊥ ‘𝑋)) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
18 | 17 | oveq2d 6565 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 ∨ (𝑦 ∧ ( ⊥ ‘𝑋))) = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))) |
19 | 16, 18 | eqeq12d 2625 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑦 = (𝑋 ∨ (𝑦 ∧ ( ⊥ ‘𝑋))) ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
20 | 15, 19 | imbi12d 333 |
. . . 4
⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 → 𝑦 = (𝑋 ∨ (𝑦 ∧ ( ⊥ ‘𝑋)))) ↔ (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))))) |
21 | 14, 20 | rspc2v 3293 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))))) |
22 | 7, 21 | syl5com 31 |
. 2
⊢ (𝐾 ∈ OML → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))))) |
23 | 22 | 3impib 1254 |
1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |