Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr4N Structured version   Visualization version   GIF version

Theorem cmtbr4N 33560
Description: Alternate definition for the commutes relation. (cmbr4i 27844 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr4.b 𝐵 = (Base‘𝐾)
cmtbr4.l = (le‘𝐾)
cmtbr4.j = (join‘𝐾)
cmtbr4.m = (meet‘𝐾)
cmtbr4.o = (oc‘𝐾)
cmtbr4.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr4N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))

Proof of Theorem cmtbr4N
StepHypRef Expression
1 cmtbr4.b . . 3 𝐵 = (Base‘𝐾)
2 cmtbr4.j . . 3 = (join‘𝐾)
3 cmtbr4.m . . 3 = (meet‘𝐾)
4 cmtbr4.o . . 3 = (oc‘𝐾)
5 cmtbr4.c . . 3 𝐶 = (cm‘𝐾)
61, 2, 3, 4, 5cmtbr3N 33559 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
7 omllat 33547 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
8 cmtbr4.l . . . . . 6 = (le‘𝐾)
91, 8, 3latmle2 16900 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
107, 9syl3an1 1351 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
11 breq1 4586 . . . 4 ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 ↔ (𝑋 𝑌) 𝑌))
1210, 11syl5ibrcom 236 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → (𝑋 (( 𝑋) 𝑌)) 𝑌))
1373ad2ant1 1075 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
14 simp2 1055 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
15 omlop 33546 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ OP)
16153ad2ant1 1075 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
171, 4opoccl 33499 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1816, 14, 17syl2anc 691 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
19 simp3 1056 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
201, 2latjcl 16874 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1318 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
221, 8, 3latmle1 16899 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2313, 14, 21, 22syl3anc 1318 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2423anim1i 590 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌))
2524ex 449 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌)))
261, 3latmcl 16875 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
2713, 14, 21, 26syl3anc 1318 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
281, 8, 3latlem12 16901 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑋 (( 𝑋) 𝑌)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
2913, 27, 14, 19, 28syl13anc 1320 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
3025, 29sylibd 228 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
311, 8, 2latlej2 16884 . . . . . . 7 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
3213, 18, 19, 31syl3anc 1318 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
331, 8, 3latmlem2 16905 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑌𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵𝑋𝐵)) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3413, 19, 21, 14, 33syl13anc 1320 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3532, 34mpd 15 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))
3630, 35jctird 565 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))))
371, 3latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
387, 37syl3an1 1351 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
391, 8latasymb 16877 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4013, 27, 38, 39syl3anc 1318 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4136, 40sylibd 228 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4212, 41impbid 201 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
436, 42bitrd 267 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  occoc 15776  joincjn 16767  meetcmee 16768  Latclat 16868  OPcops 33477  cmccmtN 33478  OMLcoml 33480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-oposet 33481  df-cmtN 33482  df-ol 33483  df-oml 33484
This theorem is referenced by:  lecmtN  33561
  Copyright terms: Public domain W3C validator