MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvs Structured version   Visualization version   GIF version

Theorem nvs 26902
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvs.1 𝑋 = (BaseSet‘𝑈)
nvs.4 𝑆 = ( ·𝑠OLD𝑈)
nvs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvs ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))

Proof of Theorem nvs
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvs.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 eqid 2610 . . . . . . 7 ( +𝑣𝑈) = ( +𝑣𝑈)
3 nvs.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
4 eqid 2610 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
5 nvs.6 . . . . . . 7 𝑁 = (normCV𝑈)
61, 2, 3, 4, 5nvi 26853 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
76simp3d 1068 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
8 simp2 1055 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
98ralimi 2936 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
107, 9syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
11 oveq2 6557 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵))
1211fveq2d 6107 . . . . . 6 (𝑥 = 𝐵 → (𝑁‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝐵)))
13 fveq2 6103 . . . . . . 7 (𝑥 = 𝐵 → (𝑁𝑥) = (𝑁𝐵))
1413oveq2d 6565 . . . . . 6 (𝑥 = 𝐵 → ((abs‘𝑦) · (𝑁𝑥)) = ((abs‘𝑦) · (𝑁𝐵)))
1512, 14eqeq12d 2625 . . . . 5 (𝑥 = 𝐵 → ((𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ↔ (𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁𝐵))))
16 oveq1 6556 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝐵) = (𝐴𝑆𝐵))
1716fveq2d 6107 . . . . . 6 (𝑦 = 𝐴 → (𝑁‘(𝑦𝑆𝐵)) = (𝑁‘(𝐴𝑆𝐵)))
18 fveq2 6103 . . . . . . 7 (𝑦 = 𝐴 → (abs‘𝑦) = (abs‘𝐴))
1918oveq1d 6564 . . . . . 6 (𝑦 = 𝐴 → ((abs‘𝑦) · (𝑁𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
2017, 19eqeq12d 2625 . . . . 5 (𝑦 = 𝐴 → ((𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁𝐵)) ↔ (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
2115, 20rspc2v 3293 . . . 4 ((𝐵𝑋𝐴 ∈ ℂ) → (∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
2210, 21syl5 33 . . 3 ((𝐵𝑋𝐴 ∈ ℂ) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
23223impia 1253 . 2 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
24233com13 1262 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cop 4131   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820  cle 9954  abscabs 13822  CVecOLDcvc 26797  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827  normCVcnmcv 26829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-1st 7059  df-2nd 7060  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839
This theorem is referenced by:  nvsge0  26903  nvm1  26904  nvpi  26906  nvmtri  26910  smcnlem  26936  ipidsq  26949  minvecolem2  27115
  Copyright terms: Public domain W3C validator