Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrrn Structured version   Visualization version   GIF version

Theorem ntrrn 37440
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrrn (𝐽 ∈ Top → ran 𝐼𝐽)

Proof of Theorem ntrrn
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ntrrn.i . . 3 𝐼 = (int‘𝐽)
21rneqi 5273 . 2 ran 𝐼 = ran (int‘𝐽)
3 vpwex 4775 . . . . . . . 8 𝒫 𝑠 ∈ V
43inex2 4728 . . . . . . 7 (𝐽 ∩ 𝒫 𝑠) ∈ V
54uniex 6851 . . . . . 6 (𝐽 ∩ 𝒫 𝑠) ∈ V
65rgenw 2908 . . . . 5 𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V
7 nfcv 2751 . . . . . 6 𝑠𝒫 𝑋
87fnmptf 5929 . . . . 5 (∀𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
96, 8mp1i 13 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
10 ntrrn.x . . . . . 6 𝑋 = 𝐽
1110ntrfval 20638 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
1211fneq1d 5895 . . . 4 (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
139, 12mpbird 246 . . 3 (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋)
14 elpwi 4117 . . . . 5 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1510ntropn 20663 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽)
1615ex 449 . . . . 5 (𝐽 ∈ Top → (𝑠𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1714, 16syl5 33 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1817ralrimiv 2948 . . 3 (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽)
19 fnfvrnss 6297 . . 3 (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽)
2013, 18, 19syl2anc 691 . 2 (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽)
212, 20syl5eqss 3612 1 (𝐽 ∈ Top → ran 𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372  cmpt 4643  ran crn 5039   Fn wfn 5799  cfv 5804  Topctop 20517  intcnt 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-top 20521  df-ntr 20634
This theorem is referenced by:  ntrf  37441
  Copyright terms: Public domain W3C validator