Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsneine0lem Structured version   Visualization version   GIF version

Theorem ntrclsneine0lem 37382
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclslem0.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrclsneine0lem (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠   𝑗,𝐼,𝑘,𝑠   𝑋,𝑠   𝜑,𝑖,𝑗,𝑘,𝑠
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘,𝑠)   𝑂(𝑖,𝑗,𝑘,𝑠)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsneine0lem
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
21eleq2d 2673 . . 3 (𝑠 = 𝑡 → (𝑋 ∈ (𝐼𝑠) ↔ 𝑋 ∈ (𝐼𝑡)))
32cbvrexv 3148 . 2 (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡))
4 ntrcls.d . . . . 5 𝐷 = (𝑂𝐵)
5 ntrcls.r . . . . 5 (𝜑𝐼𝐷𝐾)
64, 5ntrclsrcomplex 37353 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
76adantr 480 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
84, 5ntrclsrcomplex 37353 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
98adantr 480 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
10 difeq2 3684 . . . . . 6 (𝑠 = (𝐵𝑡) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
1110adantl 481 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
12 elpwi 4117 . . . . . . 7 (𝑡 ∈ 𝒫 𝐵𝑡𝐵)
13 dfss4 3820 . . . . . . 7 (𝑡𝐵 ↔ (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1412, 13sylib 207 . . . . . 6 (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1514ad2antlr 759 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1611, 15eqtr2d 2645 . . . 4 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → 𝑡 = (𝐵𝑠))
179, 16rspcedeq2vd 3291 . . 3 ((𝜑𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠))
18 fveq2 6103 . . . . . 6 (𝑡 = (𝐵𝑠) → (𝐼𝑡) = (𝐼‘(𝐵𝑠)))
1918eleq2d 2673 . . . . 5 (𝑡 = (𝐵𝑠) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
20193ad2ant3 1077 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
21 ntrcls.o . . . . . 6 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
225adantr 480 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾)
23 ntrclslem0.x . . . . . . 7 (𝜑𝑋𝐵)
2423adantr 480 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
25 simpr 476 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
2621, 4, 22, 24, 25ntrclselnel2 37376 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
27263adant3 1074 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
2820, 27bitrd 267 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
297, 17, 28rexxfrd2 4811 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
303, 29syl5bb 271 1 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by:  ntrclsneine0  37383
  Copyright terms: Public domain W3C validator