MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmf2 Structured version   Visualization version   GIF version

Theorem nmf2 22207
Description: The norm is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmf2.n 𝑁 = (norm‘𝑊)
nmf2.x 𝑋 = (Base‘𝑊)
nmf2.d 𝐷 = (dist‘𝑊)
nmf2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmf2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)

Proof of Theorem nmf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmf2.x . . . . . 6 𝑋 = (Base‘𝑊)
2 eqid 2610 . . . . . 6 (0g𝑊) = (0g𝑊)
31, 2grpidcl 17273 . . . . 5 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑋)
4 metcl 21947 . . . . . 6 ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋 ∧ (0g𝑊) ∈ 𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
543comr 1265 . . . . 5 (((0g𝑊) ∈ 𝑋𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
63, 5syl3an1 1351 . . . 4 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
763expa 1257 . . 3 (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
8 eqid 2610 . . 3 (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))) = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊)))
97, 8fmptd 6292 . 2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))):𝑋⟶ℝ)
10 nmf2.n . . . . 5 𝑁 = (norm‘𝑊)
11 nmf2.d . . . . 5 𝐷 = (dist‘𝑊)
12 nmf2.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
1310, 1, 2, 11, 12nmfval2 22205 . . . 4 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
1413adantr 480 . . 3 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
1514feq1d 5943 . 2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑁:𝑋⟶ℝ ↔ (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))):𝑋⟶ℝ))
169, 15mpbird 246 1 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cmpt 4643   × cxp 5036  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  Basecbs 15695  distcds 15777  0gc0g 15923  Grpcgrp 17245  Metcme 19553  normcnm 22191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-met 19561  df-nm 22197
This theorem is referenced by:  isngp2  22211  isngp3  22212  nmf  22229
  Copyright terms: Public domain W3C validator