Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmf2 | Structured version Visualization version GIF version |
Description: The norm is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmf2.n | ⊢ 𝑁 = (norm‘𝑊) |
nmf2.x | ⊢ 𝑋 = (Base‘𝑊) |
nmf2.d | ⊢ 𝐷 = (dist‘𝑊) |
nmf2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmf2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf2.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑊) | |
2 | eqid 2610 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
3 | 1, 2 | grpidcl 17273 | . . . . 5 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑋) |
4 | metcl 21947 | . . . . . 6 ⊢ ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (0g‘𝑊) ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) | |
5 | 4 | 3comr 1265 | . . . . 5 ⊢ (((0g‘𝑊) ∈ 𝑋 ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
6 | 3, 5 | syl3an1 1351 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
7 | 6 | 3expa 1257 | . . 3 ⊢ (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
8 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))) | |
9 | 7, 8 | fmptd 6292 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))):𝑋⟶ℝ) |
10 | nmf2.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
11 | nmf2.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑊) | |
12 | nmf2.e | . . . . 5 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
13 | 10, 1, 2, 11, 12 | nmfval2 22205 | . . . 4 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
15 | 14 | feq1d 5943 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑁:𝑋⟶ℝ ↔ (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))):𝑋⟶ℝ)) |
16 | 9, 15 | mpbird 246 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 × cxp 5036 ↾ cres 5040 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 Basecbs 15695 distcds 15777 0gc0g 15923 Grpcgrp 17245 Metcme 19553 normcnm 22191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-met 19561 df-nm 22197 |
This theorem is referenced by: isngp2 22211 isngp3 22212 nmf 22229 |
Copyright terms: Public domain | W3C validator |