MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmf2 Structured version   Unicode version

Theorem nmf2 20184
Description: The norm is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmf2.n  |-  N  =  ( norm `  W
)
nmf2.x  |-  X  =  ( Base `  W
)
nmf2.d  |-  D  =  ( dist `  W
)
nmf2.e  |-  E  =  ( D  |`  ( X  X.  X ) )
Assertion
Ref Expression
nmf2  |-  ( ( W  e.  Grp  /\  E  e.  ( Met `  X ) )  ->  N : X --> RR )

Proof of Theorem nmf2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nmf2.x . . . . . 6  |-  X  =  ( Base `  W
)
2 eqid 2442 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
31, 2grpidcl 15565 . . . . 5  |-  ( W  e.  Grp  ->  ( 0g `  W )  e.  X )
4 metcl 19906 . . . . . 6  |-  ( ( E  e.  ( Met `  X )  /\  x  e.  X  /\  ( 0g `  W )  e.  X )  ->  (
x E ( 0g
`  W ) )  e.  RR )
543comr 1195 . . . . 5  |-  ( ( ( 0g `  W
)  e.  X  /\  E  e.  ( Met `  X )  /\  x  e.  X )  ->  (
x E ( 0g
`  W ) )  e.  RR )
63, 5syl3an1 1251 . . . 4  |-  ( ( W  e.  Grp  /\  E  e.  ( Met `  X )  /\  x  e.  X )  ->  (
x E ( 0g
`  W ) )  e.  RR )
763expa 1187 . . 3  |-  ( ( ( W  e.  Grp  /\  E  e.  ( Met `  X ) )  /\  x  e.  X )  ->  ( x E ( 0g `  W ) )  e.  RR )
8 eqid 2442 . . 3  |-  ( x  e.  X  |->  ( x E ( 0g `  W ) ) )  =  ( x  e.  X  |->  ( x E ( 0g `  W
) ) )
97, 8fmptd 5866 . 2  |-  ( ( W  e.  Grp  /\  E  e.  ( Met `  X ) )  -> 
( x  e.  X  |->  ( x E ( 0g `  W ) ) ) : X --> RR )
10 nmf2.n . . . . 5  |-  N  =  ( norm `  W
)
11 nmf2.d . . . . 5  |-  D  =  ( dist `  W
)
12 nmf2.e . . . . 5  |-  E  =  ( D  |`  ( X  X.  X ) )
1310, 1, 2, 11, 12nmfval2 20182 . . . 4  |-  ( W  e.  Grp  ->  N  =  ( x  e.  X  |->  ( x E ( 0g `  W
) ) ) )
1413adantr 465 . . 3  |-  ( ( W  e.  Grp  /\  E  e.  ( Met `  X ) )  ->  N  =  ( x  e.  X  |->  ( x E ( 0g `  W ) ) ) )
1514feq1d 5545 . 2  |-  ( ( W  e.  Grp  /\  E  e.  ( Met `  X ) )  -> 
( N : X --> RR 
<->  ( x  e.  X  |->  ( x E ( 0g `  W ) ) ) : X --> RR ) )
169, 15mpbird 232 1  |-  ( ( W  e.  Grp  /\  E  e.  ( Met `  X ) )  ->  N : X --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    e. cmpt 4349    X. cxp 4837    |` cres 4841   -->wf 5413   ` cfv 5417  (class class class)co 6090   RRcr 9280   Basecbs 14173   distcds 14246   0gc0g 14377   Grpcgrp 15409   Metcme 17801   normcnm 20168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-map 7215  df-0g 14379  df-mnd 15414  df-grp 15544  df-met 17810  df-nm 20174
This theorem is referenced by:  isngp2  20188  isngp3  20189  nmf  20205
  Copyright terms: Public domain W3C validator