Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf1 Structured version   Visualization version   GIF version

Theorem nfeqf1 2287
 Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 10-Jun-2019.)
Assertion
Ref Expression
nfeqf1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem nfeqf1
StepHypRef Expression
1 nfeqf2 2285 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
2 equcom 1932 . . 3 (𝑧 = 𝑦𝑦 = 𝑧)
32nfbii 1770 . 2 (Ⅎ𝑥 𝑧 = 𝑦 ↔ Ⅎ𝑥 𝑦 = 𝑧)
41, 3sylib 207 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473  Ⅎwnf 1699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by:  dveeq1  2288  sbal2  2449  nfeud2  2470  wl-mo2df  32531  wl-eudf  32533
 Copyright terms: Public domain W3C validator