Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeqf2 | Structured version Visualization version GIF version |
Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 9-Jun-2019.) |
Ref | Expression |
---|---|
nfeqf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1744 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | nfnf1 2018 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑧 = 𝑦 | |
3 | ax13lem2 2284 | . . . . 5 ⊢ (¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → 𝑧 = 𝑦)) | |
4 | ax13lem1 2236 | . . . . 5 ⊢ (¬ 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
5 | 3, 4 | syld 46 | . . . 4 ⊢ (¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
6 | df-nf 1701 | . . . 4 ⊢ (Ⅎ𝑥 𝑧 = 𝑦 ↔ (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
7 | 5, 6 | sylibr 223 | . . 3 ⊢ (¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
8 | 2, 7 | exlimi 2073 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
9 | 1, 8 | sylbir 224 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1473 ∃wex 1695 Ⅎwnf 1699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 |
This theorem is referenced by: dveeq2 2286 nfeqf1 2287 sbal1 2448 copsexg 4882 axrepndlem1 9293 axpowndlem2 9299 axpowndlem3 9300 bj-dvelimdv 32027 bj-dvelimdv1 32028 wl-equsb3 32516 wl-sbcom2d-lem1 32521 wl-mo2df 32531 wl-eudf 32533 wl-euequ1f 32535 |
Copyright terms: Public domain | W3C validator |