MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf1 Structured version   Visualization version   Unicode version

Theorem nfeqf1 2150
Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 10-Jun-2019.)
Assertion
Ref Expression
nfeqf1  |-  ( -. 
A. x  x  =  y  ->  F/ x  y  =  z )
Distinct variable group:    x, z

Proof of Theorem nfeqf1
StepHypRef Expression
1 nfeqf2 2148 . 2  |-  ( -. 
A. x  x  =  y  ->  F/ x  z  =  y )
2 equcom 1870 . . 3  |-  ( z  =  y  <->  y  =  z )
32nfbii 1703 . 2  |-  ( F/ x  z  =  y  <-> 
F/ x  y  =  z )
41, 3sylib 201 1  |-  ( -. 
A. x  x  =  y  ->  F/ x  y  =  z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1450   F/wnf 1675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950  ax-13 2104
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676
This theorem is referenced by:  dveeq1  2151  sbal2  2310  nfeud2  2331  wl-mo2df  31969  wl-eudf  31971
  Copyright terms: Public domain W3C validator