Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbal2 Structured version   Visualization version   GIF version

Theorem sbal2 2449
 Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) Remove a distinct variable constraint. (Revised by Wolf Lammen, 3-Oct-2018.)
Assertion
Ref Expression
sbal2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbal2
StepHypRef Expression
1 sb4b 2346 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
21adantl 481 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
3 nfnae 2306 . . . . . 6 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
4 sb4b 2346 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧𝜑)))
53, 4albid 2077 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑)))
6 alcom 2024 . . . . . 6 (∀𝑥𝑦(𝑦 = 𝑧𝜑) ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑))
7 nfnae 2306 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
8 nfeqf1 2287 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
9 19.21t 2061 . . . . . . . 8 (Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
108, 9syl 17 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
117, 10albid 2077 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
126, 11syl5bb 271 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥𝑦(𝑦 = 𝑧𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
135, 12sylan9bbr 733 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
142, 13bitr4d 270 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
1514ex 449 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)))
16 sbid 2100 . . . 4 ([𝑦 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥𝜑)
17 drsb2 2366 . . . 4 (∀𝑦 𝑦 = 𝑧 → ([𝑦 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
1816, 17syl5bbr 273 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
19 sbid 2100 . . . . 5 ([𝑦 / 𝑦]𝜑𝜑)
20 drsb2 2366 . . . . 5 (∀𝑦 𝑦 = 𝑧 → ([𝑦 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑))
2119, 20syl5bbr 273 . . . 4 (∀𝑦 𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
2221dral2 2312 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
2318, 22bitr3d 269 . 2 (∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
2415, 23pm2.61d2 171 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473  Ⅎwnf 1699  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by:  2sb5ndVD  38168  2sb5ndALT  38190
 Copyright terms: Public domain W3C validator