MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirfv Structured version   Visualization version   GIF version

Theorem mirfv 25351
Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirfv (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐺   𝑧,𝑀   𝑧,𝐼   𝑧,𝑃   𝜑,𝑧   𝑧,
Allowed substitution hints:   𝑆(𝑧)   𝐿(𝑧)

Proof of Theorem mirfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mirfv.m . . 3 𝑀 = (𝑆𝐴)
2 mirval.p . . . 4 𝑃 = (Base‘𝐺)
3 mirval.d . . . 4 = (dist‘𝐺)
4 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
5 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
6 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . . 4 (𝜑𝐴𝑃)
92, 3, 4, 5, 6, 7, 8mirval 25350 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
101, 9syl5eq 2656 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
11 simplr 788 . . . . . 6 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → 𝑦 = 𝐵)
1211oveq2d 6565 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 𝑦) = (𝐴 𝐵))
1312eqeq2d 2620 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → ((𝐴 𝑧) = (𝐴 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝐵)))
1411oveq2d 6565 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵))
1514eleq2d 2673 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵)))
1613, 15anbi12d 743 . . 3 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
1716riotabidva 6527 . 2 ((𝜑𝑦 = 𝐵) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
18 mirfv.b . 2 (𝜑𝐵𝑃)
19 riotaex 6515 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V
2019a1i 11 . 2 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V)
2110, 17, 18, 20fvmptd 6197 1 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-mir 25348
This theorem is referenced by:  mircgr  25352  mirbtwn  25353  ismir  25354  mirf  25355  mireq  25360
  Copyright terms: Public domain W3C validator