MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mireq Structured version   Visualization version   GIF version

Theorem mireq 25360
Description: Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
mireq.c (𝜑𝐶𝑃)
mireq.d (𝜑 → (𝑀𝐵) = (𝑀𝐶))
Assertion
Ref Expression
mireq (𝜑𝐵 = 𝐶)

Proof of Theorem mireq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mireq.c . . . 4 (𝜑𝐶𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 25356 . . 3 (𝜑 → (𝑀𝐶) ∈ 𝑃)
11 mirmir.b . . 3 (𝜑𝐵𝑃)
121, 2, 3, 4, 5, 6, 7, 8, 11mirfv 25351 . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
13 mireq.d . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑀𝐶))
1412, 13eqtr3d 2646 . . . . . 6 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶))
151, 2, 3, 6, 11, 7mirreu3 25349 . . . . . . 7 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
16 oveq2 6557 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝐴 𝑧) = (𝐴 (𝑀𝐶)))
1716eqeq1d 2612 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐶)) = (𝐴 𝐵)))
18 oveq1 6556 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝑧𝐼𝐵) = ((𝑀𝐶)𝐼𝐵))
1918eleq2d 2673 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2017, 19anbi12d 743 . . . . . . . 8 (𝑧 = (𝑀𝐶) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵))))
2120riota2 6533 . . . . . . 7 (((𝑀𝐶) ∈ 𝑃 ∧ ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2210, 15, 21syl2anc 691 . . . . . 6 (𝜑 → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2314, 22mpbird 246 . . . . 5 (𝜑 → ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2423simpld 474 . . . 4 (𝜑 → (𝐴 (𝑀𝐶)) = (𝐴 𝐵))
2524eqcomd 2616 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 (𝑀𝐶)))
2623simprd 478 . . . 4 (𝜑𝐴 ∈ ((𝑀𝐶)𝐼𝐵))
271, 2, 3, 6, 10, 7, 11, 26tgbtwncom 25183 . . 3 (𝜑𝐴 ∈ (𝐵𝐼(𝑀𝐶)))
281, 2, 3, 4, 5, 6, 7, 8, 10, 11, 25, 27ismir 25354 . 2 (𝜑𝐵 = (𝑀‘(𝑀𝐶)))
291, 2, 3, 4, 5, 6, 7, 8, 9mirmir 25357 . 2 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
3028, 29eqtrd 2644 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  ∃!wreu 2898  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-mir 25348
This theorem is referenced by:  mirhl  25374  mirbtwnhl  25375  mirhl2  25376  colperpexlem3  25424
  Copyright terms: Public domain W3C validator