Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoevalmin1 Structured version   Visualization version   GIF version

 Description: The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
maducoevalmin1.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
maducoevalmin1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)))

Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 maducoevalmin1.a . . 3 𝐴 = (𝑁 Mat 𝑅)
4 maducoevalmin1.b . . 3 𝐵 = (Base‘𝐴)
5 eqid 2610 . . 3 (1r𝑅) = (1r𝑅)
6 eqid 2610 . . 3 (0g𝑅) = (0g𝑅)
71, 2, 3, 4, 5, 6maducoeval 20264 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))))
8 eqid 2610 . . . . . 6 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
91, 4, 8, 5, 6minmar1val 20273 . . . . 5 ((𝑀𝐵𝐻𝑁𝐼𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1093com23 1263 . . . 4 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1110eqcomd 2616 . . 3 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))
1211fveq2d 6107 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)))
137, 12eqtrd 2644 1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ifcif 4036  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Basecbs 15695  0gc0g 15923  1rcur 18324   Mat cmat 20032   maDet cmdat 20209   maAdju cmadu 20257   minMatR1 cminmar1 20258 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-slot 15699  df-base 15700  df-mat 20033  df-madu 20259  df-minmar1 20260 This theorem is referenced by:  madjusmdetlem1  29221
 Copyright terms: Public domain W3C validator