MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem3 Structured version   Visualization version   GIF version

Theorem kmlem3 8857
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. The right-hand side is part of the hypothesis of 4. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
kmlem3 ((𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∃𝑣𝑧𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
Distinct variable group:   𝑥,𝑣,𝑤,𝑧

Proof of Theorem kmlem3
StepHypRef Expression
1 dfdif2 3549 . . . 4 (𝑧 (𝑥 ∖ {𝑧})) = {𝑣𝑧 ∣ ¬ 𝑣 (𝑥 ∖ {𝑧})}
2 dfnul3 3877 . . . . . 6 ∅ = {𝑣𝑧 ∣ ¬ 𝑣𝑧}
32uneq2i 3726 . . . . 5 ({𝑣𝑧 ∣ ¬ 𝑣 (𝑥 ∖ {𝑧})} ∪ ∅) = ({𝑣𝑧 ∣ ¬ 𝑣 (𝑥 ∖ {𝑧})} ∪ {𝑣𝑧 ∣ ¬ 𝑣𝑧})
4 un0 3919 . . . . 5 ({𝑣𝑧 ∣ ¬ 𝑣 (𝑥 ∖ {𝑧})} ∪ ∅) = {𝑣𝑧 ∣ ¬ 𝑣 (𝑥 ∖ {𝑧})}
5 unrab 3857 . . . . 5 ({𝑣𝑧 ∣ ¬ 𝑣 (𝑥 ∖ {𝑧})} ∪ {𝑣𝑧 ∣ ¬ 𝑣𝑧}) = {𝑣𝑧 ∣ (¬ 𝑣 (𝑥 ∖ {𝑧}) ∨ ¬ 𝑣𝑧)}
63, 4, 53eqtr3i 2640 . . . 4 {𝑣𝑧 ∣ ¬ 𝑣 (𝑥 ∖ {𝑧})} = {𝑣𝑧 ∣ (¬ 𝑣 (𝑥 ∖ {𝑧}) ∨ ¬ 𝑣𝑧)}
7 ianor 508 . . . . . . 7 (¬ (𝑣 (𝑥 ∖ {𝑧}) ∧ 𝑣𝑧) ↔ (¬ 𝑣 (𝑥 ∖ {𝑧}) ∨ ¬ 𝑣𝑧))
8 eluni 4375 . . . . . . . . . 10 (𝑣 (𝑥 ∖ {𝑧}) ↔ ∃𝑤(𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})))
98anbi1i 727 . . . . . . . . 9 ((𝑣 (𝑥 ∖ {𝑧}) ∧ 𝑣𝑧) ↔ (∃𝑤(𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧))
10 df-rex 2902 . . . . . . . . . 10 (∃𝑤𝑥 ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑤(𝑤𝑥 ∧ ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))))
11 elin 3758 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑧𝑤) ↔ (𝑣𝑧𝑣𝑤))
1211anbi2i 726 . . . . . . . . . . . . . 14 ((𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ (𝑧𝑤 ∧ (𝑣𝑧𝑣𝑤)))
13 df-an 385 . . . . . . . . . . . . . 14 ((𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
1412, 13bitr3i 265 . . . . . . . . . . . . 13 ((𝑧𝑤 ∧ (𝑣𝑧𝑣𝑤)) ↔ ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
1514anbi2i 726 . . . . . . . . . . . 12 ((𝑤𝑥 ∧ (𝑧𝑤 ∧ (𝑣𝑧𝑣𝑤))) ↔ (𝑤𝑥 ∧ ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))))
16 eldifsn 4260 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑤𝑥𝑤𝑧))
17 necom 2835 . . . . . . . . . . . . . . . . 17 (𝑤𝑧𝑧𝑤)
1817anbi2i 726 . . . . . . . . . . . . . . . 16 ((𝑤𝑥𝑤𝑧) ↔ (𝑤𝑥𝑧𝑤))
1916, 18bitri 263 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑤𝑥𝑧𝑤))
2019anbi2i 726 . . . . . . . . . . . . . 14 (((𝑣𝑤𝑣𝑧) ∧ 𝑤 ∈ (𝑥 ∖ {𝑧})) ↔ ((𝑣𝑤𝑣𝑧) ∧ (𝑤𝑥𝑧𝑤)))
21 ancom 465 . . . . . . . . . . . . . . 15 ((𝑣𝑤𝑣𝑧) ↔ (𝑣𝑧𝑣𝑤))
2221anbi2ci 728 . . . . . . . . . . . . . 14 (((𝑣𝑤𝑣𝑧) ∧ (𝑤𝑥𝑧𝑤)) ↔ ((𝑤𝑥𝑧𝑤) ∧ (𝑣𝑧𝑣𝑤)))
23 anass 679 . . . . . . . . . . . . . 14 (((𝑤𝑥𝑧𝑤) ∧ (𝑣𝑧𝑣𝑤)) ↔ (𝑤𝑥 ∧ (𝑧𝑤 ∧ (𝑣𝑧𝑣𝑤))))
2420, 22, 233bitri 285 . . . . . . . . . . . . 13 (((𝑣𝑤𝑣𝑧) ∧ 𝑤 ∈ (𝑥 ∖ {𝑧})) ↔ (𝑤𝑥 ∧ (𝑧𝑤 ∧ (𝑣𝑧𝑣𝑤))))
25 an32 835 . . . . . . . . . . . . 13 (((𝑣𝑤𝑣𝑧) ∧ 𝑤 ∈ (𝑥 ∖ {𝑧})) ↔ ((𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧))
2624, 25bitr3i 265 . . . . . . . . . . . 12 ((𝑤𝑥 ∧ (𝑧𝑤 ∧ (𝑣𝑧𝑣𝑤))) ↔ ((𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧))
2715, 26bitr3i 265 . . . . . . . . . . 11 ((𝑤𝑥 ∧ ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))) ↔ ((𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧))
2827exbii 1764 . . . . . . . . . 10 (∃𝑤(𝑤𝑥 ∧ ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))) ↔ ∃𝑤((𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧))
29 19.41v 1901 . . . . . . . . . 10 (∃𝑤((𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧) ↔ (∃𝑤(𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧))
3010, 28, 293bitri 285 . . . . . . . . 9 (∃𝑤𝑥 ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)) ↔ (∃𝑤(𝑣𝑤𝑤 ∈ (𝑥 ∖ {𝑧})) ∧ 𝑣𝑧))
31 rexnal 2978 . . . . . . . . 9 (∃𝑤𝑥 ¬ (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)) ↔ ¬ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
329, 30, 313bitr2ri 288 . . . . . . . 8 (¬ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)) ↔ (𝑣 (𝑥 ∖ {𝑧}) ∧ 𝑣𝑧))
3332con1bii 345 . . . . . . 7 (¬ (𝑣 (𝑥 ∖ {𝑧}) ∧ 𝑣𝑧) ↔ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
347, 33bitr3i 265 . . . . . 6 ((¬ 𝑣 (𝑥 ∖ {𝑧}) ∨ ¬ 𝑣𝑧) ↔ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
3534a1i 11 . . . . 5 (𝑣𝑧 → ((¬ 𝑣 (𝑥 ∖ {𝑧}) ∨ ¬ 𝑣𝑧) ↔ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))))
3635rabbiia 3161 . . . 4 {𝑣𝑧 ∣ (¬ 𝑣 (𝑥 ∖ {𝑧}) ∨ ¬ 𝑣𝑧)} = {𝑣𝑧 ∣ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))}
371, 6, 363eqtri 2636 . . 3 (𝑧 (𝑥 ∖ {𝑧})) = {𝑣𝑧 ∣ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))}
3837neeq1i 2846 . 2 ((𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ {𝑣𝑧 ∣ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))} ≠ ∅)
39 rabn0 3912 . 2 ({𝑣𝑧 ∣ ∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤))} ≠ ∅ ↔ ∃𝑣𝑧𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
4038, 39bitri 263 1 ((𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∃𝑣𝑧𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  cun 3538  cin 3539  c0 3874  {csn 4125   cuni 4372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-nul 3875  df-sn 4126  df-uni 4373
This theorem is referenced by:  kmlem13  8867
  Copyright terms: Public domain W3C validator