Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem4 Structured version   Visualization version   GIF version

Theorem kmlem4 8858
 Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
kmlem4 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
Distinct variable group:   𝑥,𝑤,𝑧

Proof of Theorem kmlem4
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3550 . . . . 5 (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ↔ (𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})))
2 simpr 476 . . . . . 6 ((𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})) → ¬ 𝑦 (𝑥 ∖ {𝑧}))
3 eluni 4375 . . . . . . . 8 (𝑦 (𝑥 ∖ {𝑧}) ↔ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
43notbii 309 . . . . . . 7 𝑦 (𝑥 ∖ {𝑧}) ↔ ¬ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
5 alnex 1697 . . . . . . 7 (∀𝑣 ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ¬ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
6 con2b 348 . . . . . . . . 9 ((𝑦𝑣 → ¬ 𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ (𝑣 ∈ (𝑥 ∖ {𝑧}) → ¬ 𝑦𝑣))
7 imnan 437 . . . . . . . . 9 ((𝑦𝑣 → ¬ 𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
8 eldifsn 4260 . . . . . . . . . . 11 (𝑣 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑣𝑥𝑣𝑧))
9 necom 2835 . . . . . . . . . . . 12 (𝑣𝑧𝑧𝑣)
109anbi2i 726 . . . . . . . . . . 11 ((𝑣𝑥𝑣𝑧) ↔ (𝑣𝑥𝑧𝑣))
118, 10bitri 263 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑣𝑥𝑧𝑣))
1211imbi1i 338 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ {𝑧}) → ¬ 𝑦𝑣) ↔ ((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
136, 7, 123bitr3i 289 . . . . . . . 8 (¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
1413albii 1737 . . . . . . 7 (∀𝑣 ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
154, 5, 143bitr2i 287 . . . . . 6 𝑦 (𝑥 ∖ {𝑧}) ↔ ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
162, 15sylib 207 . . . . 5 ((𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})) → ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
171, 16sylbi 206 . . . 4 (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) → ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
18 eleq1 2676 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣𝑥𝑤𝑥))
19 neeq2 2845 . . . . . . . 8 (𝑣 = 𝑤 → (𝑧𝑣𝑧𝑤))
2018, 19anbi12d 743 . . . . . . 7 (𝑣 = 𝑤 → ((𝑣𝑥𝑧𝑣) ↔ (𝑤𝑥𝑧𝑤)))
21 eleq2 2677 . . . . . . . 8 (𝑣 = 𝑤 → (𝑦𝑣𝑦𝑤))
2221notbid 307 . . . . . . 7 (𝑣 = 𝑤 → (¬ 𝑦𝑣 ↔ ¬ 𝑦𝑤))
2320, 22imbi12d 333 . . . . . 6 (𝑣 = 𝑤 → (((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣) ↔ ((𝑤𝑥𝑧𝑤) → ¬ 𝑦𝑤)))
2423spv 2248 . . . . 5 (∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣) → ((𝑤𝑥𝑧𝑤) → ¬ 𝑦𝑤))
2524com12 32 . . . 4 ((𝑤𝑥𝑧𝑤) → (∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣) → ¬ 𝑦𝑤))
2617, 25syl5 33 . . 3 ((𝑤𝑥𝑧𝑤) → (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) → ¬ 𝑦𝑤))
2726ralrimiv 2948 . 2 ((𝑤𝑥𝑧𝑤) → ∀𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ¬ 𝑦𝑤)
28 disj 3969 . 2 (((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅ ↔ ∀𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ¬ 𝑦𝑤)
2927, 28sylibr 223 1 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   ∖ cdif 3537   ∩ cin 3539  ∅c0 3874  {csn 4125  ∪ cuni 4372 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-v 3175  df-dif 3543  df-in 3547  df-nul 3875  df-sn 4126  df-uni 4373 This theorem is referenced by:  kmlem5  8859  kmlem11  8865
 Copyright terms: Public domain W3C validator