Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumgra Structured version   Visualization version   GIF version

Theorem isumgra 25844
 Description: The property of being an undirected multigraph. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
isumgra ((𝑉𝑊𝐸𝑋) → (𝑉 UMGrph 𝐸𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
Distinct variable groups:   𝑥,𝐸   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem isumgra
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑒 = 𝐸)
21dmeqd 5248 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → dom 𝑒 = dom 𝐸)
31, 2feq12d 5946 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
4 simpl 472 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑣 = 𝑉)
54pweqd 4113 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉)
65difeq1d 3689 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝒫 𝑣 ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
7 rabeq 3166 . . . 4 ((𝒫 𝑣 ∖ {∅}) = (𝒫 𝑉 ∖ {∅}) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
8 feq3 5941 . . . 4 ({𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → (𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
96, 7, 83syl 18 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
103, 9bitrd 267 . 2 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
11 df-umgra 25842 . 2 UMGrph = {⟨𝑣, 𝑒⟩ ∣ 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}}
1210, 11brabga 4914 1 ((𝑉𝑊𝐸𝑋) → (𝑉 UMGrph 𝐸𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900   ∖ cdif 3537  ∅c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  dom cdm 5038  ⟶wf 5800  ‘cfv 5804   ≤ cle 9954  2c2 10947  #chash 12979   UMGrph cumg 25841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808  df-umgra 25842 This theorem is referenced by:  wrdumgra  25845  umgraf2  25846  umgrares  25853  umgra0  25854  umgra1  25855  umisuhgra  25856  umgraun  25857  uslisumgra  25893
 Copyright terms: Public domain W3C validator