Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uslisumgra | Structured version Visualization version GIF version |
Description: An undirected simple graph with loops is an undirected multigraph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) |
Ref | Expression |
---|---|
uslisumgra | ⊢ (𝑉 USLGrph 𝐸 → 𝑉 UMGrph 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uslgrav 25866 | . 2 ⊢ (𝑉 USLGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
2 | isuslgra 25872 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USLGrph 𝐸 ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) | |
3 | f1f 6014 | . . . 4 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) | |
4 | 2, 3 | syl6bi 242 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USLGrph 𝐸 → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) |
5 | isumgra 25844 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 UMGrph 𝐸 ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) | |
6 | 4, 5 | sylibrd 248 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USLGrph 𝐸 → 𝑉 UMGrph 𝐸)) |
7 | 1, 6 | mpcom 37 | 1 ⊢ (𝑉 USLGrph 𝐸 → 𝑉 UMGrph 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 {crab 2900 Vcvv 3173 ∖ cdif 3537 ∅c0 3874 𝒫 cpw 4108 {csn 4125 class class class wbr 4583 dom cdm 5038 ⟶wf 5800 –1-1→wf1 5801 ‘cfv 5804 ≤ cle 9954 2c2 10947 #chash 12979 UMGrph cumg 25841 USLGrph cuslg 25858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-umgra 25842 df-uslgra 25861 |
This theorem is referenced by: usisumgra 25895 uslgraun 25903 |
Copyright terms: Public domain | W3C validator |