Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridl2 Structured version   Visualization version   GIF version

Theorem ispridl2 33007
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 33039 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridl2.1 𝐺 = (1st𝑅)
ispridl2.2 𝐻 = (2nd𝑅)
ispridl2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
ispridl2 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
Distinct variable groups:   𝑅,𝑎,𝑏   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem ispridl2
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridl2.1 . . . . . . . . . . . . . 14 𝐺 = (1st𝑅)
2 ispridl2.3 . . . . . . . . . . . . . 14 𝑋 = ran 𝐺
31, 2idlss 32985 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑟 ∈ (Idl‘𝑅)) → 𝑟𝑋)
4 ssralv 3629 . . . . . . . . . . . . 13 (𝑟𝑋 → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
53, 4syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑟 ∈ (Idl‘𝑅)) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
65adantrr 749 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
71, 2idlss 32985 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idl‘𝑅)) → 𝑠𝑋)
8 ssralv 3629 . . . . . . . . . . . . . 14 (𝑠𝑋 → (∀𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
98ralimdv 2946 . . . . . . . . . . . . 13 (𝑠𝑋 → (∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
107, 9syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idl‘𝑅)) → (∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1110adantrl 748 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑟𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
126, 11syld 46 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1312adantlr 747 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
14 r19.26-2 3047 . . . . . . . . . . 11 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 ∧ ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
15 pm3.35 609 . . . . . . . . . . . . . 14 (((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑎𝑃𝑏𝑃))
1615ralimi 2936 . . . . . . . . . . . . 13 (∀𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → ∀𝑏𝑠 (𝑎𝑃𝑏𝑃))
1716ralimi 2936 . . . . . . . . . . . 12 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → ∀𝑎𝑟𝑏𝑠 (𝑎𝑃𝑏𝑃))
18 2ralor 3088 . . . . . . . . . . . . 13 (∀𝑎𝑟𝑏𝑠 (𝑎𝑃𝑏𝑃) ↔ (∀𝑎𝑟 𝑎𝑃 ∨ ∀𝑏𝑠 𝑏𝑃))
19 dfss3 3558 . . . . . . . . . . . . . 14 (𝑟𝑃 ↔ ∀𝑎𝑟 𝑎𝑃)
20 dfss3 3558 . . . . . . . . . . . . . 14 (𝑠𝑃 ↔ ∀𝑏𝑠 𝑏𝑃)
2119, 20orbi12i 542 . . . . . . . . . . . . 13 ((𝑟𝑃𝑠𝑃) ↔ (∀𝑎𝑟 𝑎𝑃 ∨ ∀𝑏𝑠 𝑏𝑃))
2218, 21sylbb2 227 . . . . . . . . . . . 12 (∀𝑎𝑟𝑏𝑠 (𝑎𝑃𝑏𝑃) → (𝑟𝑃𝑠𝑃))
2317, 22syl 17 . . . . . . . . . . 11 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑟𝑃𝑠𝑃))
2414, 23sylbir 224 . . . . . . . . . 10 ((∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 ∧ ∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑟𝑃𝑠𝑃))
2524expcom 450 . . . . . . . . 9 (∀𝑎𝑟𝑏𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))
2613, 25syl6 34 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
2726ralrimdvva 2957 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
2827ex 449 . . . . . 6 (𝑅 ∈ RingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
2928adantrd 483 . . . . 5 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
3029imdistand 724 . . . 4 (𝑅 ∈ RingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
31 df-3an 1033 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
32 df-3an 1033 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
3330, 31, 323imtr4g 284 . . 3 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
34 ispridl2.2 . . . 4 𝐻 = (2nd𝑅)
351, 34, 2ispridl 33003 . . 3 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎𝑟𝑏𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
3633, 35sylibrd 248 . 2 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
3736imp 444 1 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540  ran crn 5039  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  RingOpscrngo 32863  Idlcidl 32976  PrIdlcpridl 32977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-idl 32979  df-pridl 32980
This theorem is referenced by:  ispridlc  33039
  Copyright terms: Public domain W3C validator