Step | Hyp | Ref
| Expression |
1 | | ishpg.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
2 | | elex 3185 |
. . . 4
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) |
3 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺)) |
4 | | ishpg.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
5 | 3, 4 | syl6eqr 2662 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿) |
6 | 5 | rneqd 5274 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿) |
7 | | ishpg.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
8 | | ishpg.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
9 | | simpl 472 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
10 | 9 | eqcomd 2616 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑃 = 𝑝) |
11 | 10 | difeq1d 3689 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑃 ∖ 𝑑) = (𝑝 ∖ 𝑑)) |
12 | 11 | eleq2d 2673 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎 ∈ (𝑃 ∖ 𝑑) ↔ 𝑎 ∈ (𝑝 ∖ 𝑑))) |
13 | 11 | eleq2d 2673 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑐 ∈ (𝑃 ∖ 𝑑) ↔ 𝑐 ∈ (𝑝 ∖ 𝑑))) |
14 | 12, 13 | anbi12d 743 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)))) |
15 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
16 | 15 | eqcomd 2616 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
17 | 16 | oveqd 6566 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎𝐼𝑐) = (𝑎𝑖𝑐)) |
18 | 17 | eleq2d 2673 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑎𝐼𝑐) ↔ 𝑡 ∈ (𝑎𝑖𝑐))) |
19 | 18 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐))) |
20 | 14, 19 | anbi12d 743 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)))) |
21 | 11 | eleq2d 2673 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏 ∈ (𝑃 ∖ 𝑑) ↔ 𝑏 ∈ (𝑝 ∖ 𝑑))) |
22 | 21, 13 | anbi12d 743 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)))) |
23 | 16 | oveqd 6566 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏𝐼𝑐) = (𝑏𝑖𝑐)) |
24 | 23 | eleq2d 2673 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑏𝐼𝑐) ↔ 𝑡 ∈ (𝑏𝑖𝑐))) |
25 | 24 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) |
26 | 22, 25 | anbi12d 743 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))) |
27 | 20, 26 | anbi12d 743 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))))) |
28 | 10, 27 | rexeqbidv 3130 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))))) |
29 | 7, 8, 28 | sbcie2s 15744 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))))) |
30 | 29 | opabbidv 4648 |
. . . . . 6
⊢ (𝑔 = 𝐺 → {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) |
31 | 6, 30 | mpteq12dv 4663 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
32 | | df-hpg 25450 |
. . . . 5
⊢ hpG =
(𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) |
33 | | fvex 6113 |
. . . . . . . 8
⊢
(LineG‘𝐺)
∈ V |
34 | 4, 33 | eqeltri 2684 |
. . . . . . 7
⊢ 𝐿 ∈ V |
35 | 34 | rnex 6992 |
. . . . . 6
⊢ ran 𝐿 ∈ V |
36 | 35 | mptex 6390 |
. . . . 5
⊢ (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) ∈ V |
37 | 31, 32, 36 | fvmpt 6191 |
. . . 4
⊢ (𝐺 ∈ V →
(hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
38 | 1, 2, 37 | 3syl 18 |
. . 3
⊢ (𝜑 → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
39 | | difeq2 3684 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (𝑃 ∖ 𝑑) = (𝑃 ∖ 𝐷)) |
40 | 39 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑎 ∈ (𝑃 ∖ 𝑑) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
41 | 39 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑐 ∈ (𝑃 ∖ 𝑑) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
42 | 40, 41 | anbi12d 743 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
43 | | id 22 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → 𝑑 = 𝐷) |
44 | 43 | rexeqdv 3122 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
45 | 42, 44 | anbi12d 743 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
46 | 39 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑏 ∈ (𝑃 ∖ 𝑑) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
47 | 46, 41 | anbi12d 743 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
48 | 43 | rexeqdv 3122 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
49 | 47, 48 | anbi12d 743 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
50 | 45, 49 | anbi12d 743 |
. . . . . 6
⊢ (𝑑 = 𝐷 → ((((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
51 | 50 | rexbidv 3034 |
. . . . 5
⊢ (𝑑 = 𝐷 → (∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
52 | 51 | opabbidv 4648 |
. . . 4
⊢ (𝑑 = 𝐷 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
53 | 52 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑑 = 𝐷) → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
54 | | ishpg.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
55 | | df-xp 5044 |
. . . . . 6
⊢ (𝑃 × 𝑃) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
56 | | fvex 6113 |
. . . . . . . 8
⊢
(Base‘𝐺)
∈ V |
57 | 7, 56 | eqeltri 2684 |
. . . . . . 7
⊢ 𝑃 ∈ V |
58 | 57, 57 | xpex 6860 |
. . . . . 6
⊢ (𝑃 × 𝑃) ∈ V |
59 | 55, 58 | eqeltrri 2685 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} ∈ V |
60 | | eldifi 3694 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (𝑃 ∖ 𝐷) → 𝑎 ∈ 𝑃) |
61 | | eldifi 3694 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (𝑃 ∖ 𝐷) → 𝑏 ∈ 𝑃) |
62 | 60, 61 | anim12i 588 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
63 | 62 | adantrr 749 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
64 | 63 | adantlr 747 |
. . . . . . . . 9
⊢ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
65 | 64 | adantlr 747 |
. . . . . . . 8
⊢ ((((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
66 | 65 | adantrr 749 |
. . . . . . 7
⊢ ((((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
67 | 66 | rexlimivw 3011 |
. . . . . 6
⊢
(∃𝑐 ∈
𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
68 | 67 | ssopab2i 4928 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ⊆ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
69 | 59, 68 | ssexi 4731 |
. . . 4
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V |
70 | 69 | a1i 11 |
. . 3
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V) |
71 | 38, 53, 54, 70 | fvmptd 6197 |
. 2
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
72 | | vex 3176 |
. . . . . . 7
⊢ 𝑎 ∈ V |
73 | | vex 3176 |
. . . . . . 7
⊢ 𝑐 ∈ V |
74 | | eleq1 2676 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
75 | 74 | anbi1d 737 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
76 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑎 → (𝑒𝐼𝑓) = (𝑎𝐼𝑓)) |
77 | 76 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑓))) |
78 | 77 | rexbidv 3034 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓))) |
79 | 75, 78 | anbi12d 743 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)))) |
80 | | eleq1 2676 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑓 ∈ (𝑃 ∖ 𝐷) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
81 | 80 | anbi2d 736 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
82 | | oveq2 6557 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑐 → (𝑎𝐼𝑓) = (𝑎𝐼𝑐)) |
83 | 82 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑎𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑐))) |
84 | 83 | rexbidv 3034 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
85 | 81, 84 | anbi12d 743 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
86 | | ishpg.o |
. . . . . . . 8
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
87 | | simpl 472 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑎 = 𝑒) |
88 | 87 | eleq1d 2672 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎 ∈ (𝑃 ∖ 𝐷) ↔ 𝑒 ∈ (𝑃 ∖ 𝐷))) |
89 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑏 = 𝑓) |
90 | 89 | eleq1d 2672 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑏 ∈ (𝑃 ∖ 𝐷) ↔ 𝑓 ∈ (𝑃 ∖ 𝐷))) |
91 | 88, 90 | anbi12d 743 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
92 | | oveq12 6558 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎𝐼𝑏) = (𝑒𝐼𝑓)) |
93 | 92 | eleq2d 2673 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑒𝐼𝑓))) |
94 | 93 | rexbidv 3034 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))) |
95 | 91, 94 | anbi12d 743 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)))) |
96 | 95 | cbvopabv 4654 |
. . . . . . . 8
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
97 | 86, 96 | eqtri 2632 |
. . . . . . 7
⊢ 𝑂 = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
98 | 72, 73, 79, 85, 97 | brab 4923 |
. . . . . 6
⊢ (𝑎𝑂𝑐 ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
99 | | vex 3176 |
. . . . . . 7
⊢ 𝑏 ∈ V |
100 | | eleq1 2676 |
. . . . . . . . 9
⊢ (𝑒 = 𝑏 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
101 | 100 | anbi1d 737 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
102 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑏 → (𝑒𝐼𝑓) = (𝑏𝐼𝑓)) |
103 | 102 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝑒 = 𝑏 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑓))) |
104 | 103 | rexbidv 3034 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓))) |
105 | 101, 104 | anbi12d 743 |
. . . . . . 7
⊢ (𝑒 = 𝑏 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)))) |
106 | 80 | anbi2d 736 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
107 | | oveq2 6557 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑐 → (𝑏𝐼𝑓) = (𝑏𝐼𝑐)) |
108 | 107 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑏𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑐))) |
109 | 108 | rexbidv 3034 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
110 | 106, 109 | anbi12d 743 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
111 | 99, 73, 105, 110, 97 | brab 4923 |
. . . . . 6
⊢ (𝑏𝑂𝑐 ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
112 | 98, 111 | anbi12i 729 |
. . . . 5
⊢ ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
113 | 112 | rexbii 3023 |
. . . 4
⊢
(∃𝑐 ∈
𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
114 | 113 | opabbii 4649 |
. . 3
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} |
115 | 114 | a1i 11 |
. 2
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
116 | 71, 115 | eqtr4d 2647 |
1
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |