MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem4 Structured version   Visualization version   GIF version

Theorem isf34lem4 9082
Description: Lemma for isfin3-4 9087. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem4
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sspwuni 4547 . . . . 5 (𝑋 ⊆ 𝒫 𝐴 𝑋𝐴)
2 compss.a . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem1 9077 . . . . 5 ((𝐴𝑉 𝑋𝐴) → (𝐹 𝑋) = (𝐴 𝑋))
41, 3sylan2b 491 . . . 4 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 𝑋) = (𝐴 𝑋))
54adantrr 749 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐴 𝑋))
6 simplrr 797 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) → ¬ 𝑏 𝑋)
7 simprl 790 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) → 𝑏𝐴)
87ad2antrr 758 . . . . . . . . . . . . 13 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → 𝑏𝐴)
9 simpr 476 . . . . . . . . . . . . 13 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → ¬ 𝑏𝑎)
108, 9eldifd 3551 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → 𝑏 ∈ (𝐴𝑎))
11 simplrr 797 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → (𝐴𝑎) ∈ 𝑋)
12 elunii 4377 . . . . . . . . . . . 12 ((𝑏 ∈ (𝐴𝑎) ∧ (𝐴𝑎) ∈ 𝑋) → 𝑏 𝑋)
1310, 11, 12syl2anc 691 . . . . . . . . . . 11 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → 𝑏 𝑋)
1413ex 449 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) → (¬ 𝑏𝑎𝑏 𝑋))
156, 14mt3d 139 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) → 𝑏𝑎)
1615expr 641 . . . . . . . 8 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ 𝑎 ∈ 𝒫 𝐴) → ((𝐴𝑎) ∈ 𝑋𝑏𝑎))
1716ralrimiva 2949 . . . . . . 7 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) → ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
1817ex 449 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝑏𝐴 ∧ ¬ 𝑏 𝑋) → ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
19 n0 3890 . . . . . . . . 9 (𝑋 ≠ ∅ ↔ ∃𝑐 𝑐𝑋)
20 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → 𝑋 ⊆ 𝒫 𝐴)
2120sselda 3568 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → 𝑐 ∈ 𝒫 𝐴)
2221elpwid 4118 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → 𝑐𝐴)
23 dfss4 3820 . . . . . . . . . . . . . . 15 (𝑐𝐴 ↔ (𝐴 ∖ (𝐴𝑐)) = 𝑐)
2422, 23sylib 207 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (𝐴 ∖ (𝐴𝑐)) = 𝑐)
25 simpr 476 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → 𝑐𝑋)
2624, 25eqeltrd 2688 . . . . . . . . . . . . 13 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋)
27 difss 3699 . . . . . . . . . . . . . . . 16 (𝐴𝑐) ⊆ 𝐴
28 elpw2g 4754 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ((𝐴𝑐) ∈ 𝒫 𝐴 ↔ (𝐴𝑐) ⊆ 𝐴))
2927, 28mpbiri 247 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴𝑐) ∈ 𝒫 𝐴)
3029ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (𝐴𝑐) ∈ 𝒫 𝐴)
31 difeq2 3684 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝐴𝑐) → (𝐴𝑎) = (𝐴 ∖ (𝐴𝑐)))
3231eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑎 = (𝐴𝑐) → ((𝐴𝑎) ∈ 𝑋 ↔ (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋))
33 eleq2 2677 . . . . . . . . . . . . . . . 16 (𝑎 = (𝐴𝑐) → (𝑏𝑎𝑏 ∈ (𝐴𝑐)))
3432, 33imbi12d 333 . . . . . . . . . . . . . . 15 (𝑎 = (𝐴𝑐) → (((𝐴𝑎) ∈ 𝑋𝑏𝑎) ↔ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
3534rspcv 3278 . . . . . . . . . . . . . 14 ((𝐴𝑐) ∈ 𝒫 𝐴 → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
3630, 35syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
3726, 36mpid 43 . . . . . . . . . . . 12 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏 ∈ (𝐴𝑐)))
38 eldifi 3694 . . . . . . . . . . . 12 (𝑏 ∈ (𝐴𝑐) → 𝑏𝐴)
3937, 38syl6 34 . . . . . . . . . . 11 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴))
4039ex 449 . . . . . . . . . 10 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝑐𝑋 → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴)))
4140exlimdv 1848 . . . . . . . . 9 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (∃𝑐 𝑐𝑋 → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴)))
4219, 41syl5bi 231 . . . . . . . 8 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝑋 ≠ ∅ → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴)))
4342impr 647 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴))
44 eluni 4375 . . . . . . . . 9 (𝑏 𝑋 ↔ ∃𝑐(𝑏𝑐𝑐𝑋))
4529ad2antrr 758 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → (𝐴𝑐) ∈ 𝒫 𝐴)
4626adantlrr 753 . . . . . . . . . . . . . . . 16 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ 𝑐𝑋) → (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋)
4746adantrl 748 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋)
48 elndif 3696 . . . . . . . . . . . . . . . 16 (𝑏𝑐 → ¬ 𝑏 ∈ (𝐴𝑐))
4948ad2antrl 760 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ¬ 𝑏 ∈ (𝐴𝑐))
5047, 49jca 553 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋 ∧ ¬ 𝑏 ∈ (𝐴𝑐)))
51 annim 440 . . . . . . . . . . . . . 14 (((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋 ∧ ¬ 𝑏 ∈ (𝐴𝑐)) ↔ ¬ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐)))
5250, 51sylib 207 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ¬ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐)))
5334notbid 307 . . . . . . . . . . . . . 14 (𝑎 = (𝐴𝑐) → (¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎) ↔ ¬ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
5453rspcev 3282 . . . . . . . . . . . . 13 (((𝐴𝑐) ∈ 𝒫 𝐴 ∧ ¬ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))) → ∃𝑎 ∈ 𝒫 𝐴 ¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎))
5545, 52, 54syl2anc 691 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ∃𝑎 ∈ 𝒫 𝐴 ¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎))
56 rexnal 2978 . . . . . . . . . . . 12 (∃𝑎 ∈ 𝒫 𝐴 ¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎) ↔ ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
5755, 56sylib 207 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
5857ex 449 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝑏𝑐𝑐𝑋) → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
5958exlimdv 1848 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∃𝑐(𝑏𝑐𝑐𝑋) → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
6044, 59syl5bi 231 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝑏 𝑋 → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
6160con2d 128 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → ¬ 𝑏 𝑋))
6243, 61jcad 554 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → (𝑏𝐴 ∧ ¬ 𝑏 𝑋)))
6318, 62impbid 201 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝑏𝐴 ∧ ¬ 𝑏 𝑋) ↔ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
64 eldif 3550 . . . . 5 (𝑏 ∈ (𝐴 𝑋) ↔ (𝑏𝐴 ∧ ¬ 𝑏 𝑋))
65 vex 3176 . . . . . 6 𝑏 ∈ V
6665elintrab 4423 . . . . 5 (𝑏 {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋} ↔ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
6763, 64, 663bitr4g 302 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝑏 ∈ (𝐴 𝑋) ↔ 𝑏 {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋}))
6867eqrdv 2608 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐴 𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋})
695, 68eqtrd 2644 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋})
702compss 9081 . . 3 (𝐹𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋}
7170inteqi 4414 . 2 (𝐹𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋}
7269, 71syl6eqr 2662 1 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   cint 4410  cmpt 4643  cima 5041  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812
This theorem is referenced by:  isf34lem5  9083  isf34lem6  9085
  Copyright terms: Public domain W3C validator