Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inidl | Structured version Visualization version GIF version |
Description: The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
inidl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4446 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} = (𝐼 ∩ 𝐽)) | |
2 | 1 | 3adant1 1072 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} = (𝐼 ∩ 𝐽)) |
3 | prnzg 4254 | . . . . . 6 ⊢ (𝐼 ∈ (Idl‘𝑅) → {𝐼, 𝐽} ≠ ∅) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ≠ ∅) |
5 | prssi 4293 | . . . . 5 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ⊆ (Idl‘𝑅)) | |
6 | 4, 5 | jca 553 | . . . 4 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅))) |
7 | intidl 32998 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) | |
8 | 7 | 3expb 1258 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅))) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) |
9 | 6, 8 | sylan2 490 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅))) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) |
10 | 9 | 3impb 1252 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) |
11 | 2, 10 | eqeltrrd 2689 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∩ cin 3539 ⊆ wss 3540 ∅c0 3874 {cpr 4127 ∩ cint 4410 ‘cfv 5804 RingOpscrngo 32863 Idlcidl 32976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-idl 32979 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |