Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intidl Structured version   Visualization version   GIF version

Theorem intidl 32998
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
intidl ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ∈ (Idl‘𝑅))

Proof of Theorem intidl
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4434 . . . 4 (𝐶 ≠ ∅ → 𝐶 𝐶)
213ad2ant2 1076 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 𝐶)
3 ssel2 3563 . . . . . . . 8 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶) → 𝑖 ∈ (Idl‘𝑅))
4 eqid 2610 . . . . . . . . 9 (1st𝑅) = (1st𝑅)
5 eqid 2610 . . . . . . . . 9 ran (1st𝑅) = ran (1st𝑅)
64, 5idlss 32985 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st𝑅))
73, 6sylan2 490 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → 𝑖 ⊆ ran (1st𝑅))
87anassrs 678 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ ran (1st𝑅))
98ralrimiva 2949 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
1093adant2 1073 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
11 unissb 4405 . . . 4 ( 𝐶 ⊆ ran (1st𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
1210, 11sylibr 223 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
132, 12sstrd 3578 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
14 eqid 2610 . . . . . . . 8 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
154, 14idl0cl 32987 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝑖)
163, 15sylan2 490 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (GId‘(1st𝑅)) ∈ 𝑖)
1716anassrs 678 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → (GId‘(1st𝑅)) ∈ 𝑖)
1817ralrimiva 2949 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
19 fvex 6113 . . . . 5 (GId‘(1st𝑅)) ∈ V
2019elint2 4417 . . . 4 ((GId‘(1st𝑅)) ∈ 𝐶 ↔ ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2118, 20sylibr 223 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝐶)
22213adant2 1073 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝐶)
23 vex 3176 . . . . . 6 𝑥 ∈ V
2423elint2 4417 . . . . 5 (𝑥 𝐶 ↔ ∀𝑖𝐶 𝑥𝑖)
25 vex 3176 . . . . . . . . . 10 𝑦 ∈ V
2625elint2 4417 . . . . . . . . 9 (𝑦 𝐶 ↔ ∀𝑖𝐶 𝑦𝑖)
27 r19.26 3046 . . . . . . . . . . 11 (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) ↔ (∀𝑖𝐶 𝑥𝑖 ∧ ∀𝑖𝐶 𝑦𝑖))
284idladdcl 32988 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
2928ex 449 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
303, 29sylan2 490 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
3130anassrs 678 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑖𝐶) → ((𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
3231ralimdva 2945 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) → ∀𝑖𝐶 (𝑥(1st𝑅)𝑦) ∈ 𝑖))
33 ovex 6577 . . . . . . . . . . . . 13 (𝑥(1st𝑅)𝑦) ∈ V
3433elint2 4417 . . . . . . . . . . . 12 ((𝑥(1st𝑅)𝑦) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑥(1st𝑅)𝑦) ∈ 𝑖)
3532, 34syl6ibr 241 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 (𝑥𝑖𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3627, 35syl5bir 232 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ((∀𝑖𝐶 𝑥𝑖 ∧ ∀𝑖𝐶 𝑦𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3736expdimp 452 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (∀𝑖𝐶 𝑦𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3826, 37syl5bi 231 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑦 𝐶 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
3938ralrimiv 2948 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
40 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑅) = (2nd𝑅)
414, 40, 5idllmulcl 32989 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑧 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
4241anass1rs 845 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑥𝑖) → (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
4342ex 449 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4443an32s 842 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
453, 44sylan2 490 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4645an4s 865 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4746anassrs 678 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖𝐶) → (𝑥𝑖 → (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4847ralimdva 2945 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (∀𝑖𝐶 𝑥𝑖 → ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖))
4948imp 444 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
50 ovex 6577 . . . . . . . . . . . 12 (𝑧(2nd𝑅)𝑥) ∈ V
5150elint2 4417 . . . . . . . . . . 11 ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑧(2nd𝑅)𝑥) ∈ 𝑖)
5249, 51sylibr 223 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
534, 40, 5idlrmulcl 32990 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
5453anass1rs 845 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑥𝑖) → (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
5554ex 449 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5655an32s 842 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
573, 56sylan2 490 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5857an4s 865 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
5958anassrs 678 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ 𝑖𝐶) → (𝑥𝑖 → (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
6059ralimdva 2945 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (∀𝑖𝐶 𝑥𝑖 → ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖))
6160imp 444 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
62 ovex 6577 . . . . . . . . . . . 12 (𝑥(2nd𝑅)𝑧) ∈ V
6362elint2 4417 . . . . . . . . . . 11 ((𝑥(2nd𝑅)𝑧) ∈ 𝐶 ↔ ∀𝑖𝐶 (𝑥(2nd𝑅)𝑧) ∈ 𝑖)
6461, 63sylibr 223 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
6552, 64jca 553 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6665an32s 842 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6766ralrimiva 2949 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
6839, 67jca 553 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶 𝑥𝑖) → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
6968ex 449 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶 𝑥𝑖 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
7024, 69syl5bi 231 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑥 𝐶 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
7170ralrimiv 2948 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
72713adant2 1073 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
734, 40, 5, 14isidl 32983 . . 3 (𝑅 ∈ RingOps → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
74733ad2ant1 1075 . 2 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
7513, 22, 72, 74mpbir3and 1238 1 ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874   cuni 4372   cint 4410  ran crn 5039  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  GIdcgi 26728  RingOpscrngo 32863  Idlcidl 32976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-idl 32979
This theorem is referenced by:  inidl  32999  igenidl  33032
  Copyright terms: Public domain W3C validator