MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indifdir Structured version   Visualization version   GIF version

Theorem indifdir 3842
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
Assertion
Ref Expression
indifdir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))

Proof of Theorem indifdir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 922 . . . . . . . 8 ¬ (𝑥𝐶 ∧ ¬ 𝑥𝐶)
21intnan 951 . . . . . . 7 ¬ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐶))
3 anass 679 . . . . . . 7 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐶)))
42, 3mtbir 312 . . . . . 6 ¬ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶)
54biorfi 421 . . . . 5 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ↔ (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶)))
6 an32 835 . . . . 5 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
7 andi 907 . . . . 5 (((𝑥𝐴𝑥𝐶) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶)) ↔ (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶)))
85, 6, 73bitr4i 291 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶)))
9 ianor 508 . . . . 5 (¬ (𝑥𝐵𝑥𝐶) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶))
109anbi2i 726 . . . 4 (((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶)))
118, 10bitr4i 266 . . 3 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
12 elin 3758 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶))
13 eldif 3550 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1413anbi1i 727 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶))
1512, 14bitri 263 . . 3 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶))
16 eldif 3550 . . . 4 (𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ ¬ 𝑥 ∈ (𝐵𝐶)))
17 elin 3758 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
18 elin 3758 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
1918notbii 309 . . . . 5 𝑥 ∈ (𝐵𝐶) ↔ ¬ (𝑥𝐵𝑥𝐶))
2017, 19anbi12i 729 . . . 4 ((𝑥 ∈ (𝐴𝐶) ∧ ¬ 𝑥 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
2116, 20bitri 263 . . 3 (𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
2211, 15, 213bitr4i 291 . 2 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ 𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)))
2322eqriv 2607 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 382  wa 383   = wceq 1475  wcel 1977  cdif 3537  cin 3539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547
This theorem is referenced by:  preddif  5622  fresaun  5988  uniioombllem4  23160  subsalsal  39253
  Copyright terms: Public domain W3C validator