Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaun Structured version   Visualization version   GIF version

Theorem fresaun 5988
 Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaun ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fresaun
StepHypRef Expression
1 simp1 1054 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐹:𝐴𝐶)
2 inss1 3795 . . . 4 (𝐴𝐵) ⊆ 𝐴
3 fssres 5983 . . . 4 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
41, 2, 3sylancl 693 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
5 difss 3699 . . . . 5 (𝐴𝐵) ⊆ 𝐴
6 fssres 5983 . . . . 5 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
71, 5, 6sylancl 693 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
8 simp2 1055 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐺:𝐵𝐶)
9 difss 3699 . . . . 5 (𝐵𝐴) ⊆ 𝐵
10 fssres 5983 . . . . 5 ((𝐺:𝐵𝐶 ∧ (𝐵𝐴) ⊆ 𝐵) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
118, 9, 10sylancl 693 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
12 indifdir 3842 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴)))
13 disjdif 3992 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
1413difeq1i 3686 . . . . . 6 ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴))) = (∅ ∖ (𝐵 ∩ (𝐵𝐴)))
15 0dif 3929 . . . . . 6 (∅ ∖ (𝐵 ∩ (𝐵𝐴))) = ∅
1612, 14, 153eqtri 2636 . . . . 5 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
1716a1i 11 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅)
18 fun2 5980 . . . 4 ((((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶 ∧ (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶) ∧ ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶)
197, 11, 17, 18syl21anc 1317 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶)
20 indi 3832 . . . . 5 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴)))
21 inass 3785 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ (𝐵 ∩ (𝐴𝐵)))
22 disjdif 3992 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
2322ineq2i 3773 . . . . . . 7 (𝐴 ∩ (𝐵 ∩ (𝐴𝐵))) = (𝐴 ∩ ∅)
24 in0 3920 . . . . . . 7 (𝐴 ∩ ∅) = ∅
2521, 23, 243eqtri 2636 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
26 incom 3767 . . . . . . . 8 (𝐴𝐵) = (𝐵𝐴)
2726ineq1i 3772 . . . . . . 7 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ (𝐵𝐴))
28 inass 3785 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐵𝐴)) = (𝐵 ∩ (𝐴 ∩ (𝐵𝐴)))
2913ineq2i 3773 . . . . . . . 8 (𝐵 ∩ (𝐴 ∩ (𝐵𝐴))) = (𝐵 ∩ ∅)
30 in0 3920 . . . . . . . 8 (𝐵 ∩ ∅) = ∅
3128, 29, 303eqtri 2636 . . . . . . 7 ((𝐵𝐴) ∩ (𝐵𝐴)) = ∅
3227, 31eqtri 2632 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
3325, 32uneq12i 3727 . . . . 5 (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴))) = (∅ ∪ ∅)
34 un0 3919 . . . . 5 (∅ ∪ ∅) = ∅
3520, 33, 343eqtri 2636 . . . 4 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅
3635a1i 11 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅)
37 fun2 5980 . . 3 ((((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶 ∧ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶) ∧ ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶)
384, 19, 36, 37syl21anc 1317 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶)
39 ffn 5958 . . . . 5 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
40 ffn 5958 . . . . 5 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
41 id 22 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
42 resasplit 5987 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
4339, 40, 41, 42syl3an 1360 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
4443feq1d 5943 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺):(𝐴𝐵)⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶))
45 un12 3733 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))
4626uneq1i 3725 . . . . . . 7 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
47 inundif 3998 . . . . . . 7 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4846, 47eqtri 2632 . . . . . 6 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4948uneq2i 3726 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ 𝐵)
50 undif1 3995 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
5145, 49, 503eqtri 2636 . . . 4 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐴𝐵)
5251feq2i 5950 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶)
5344, 52syl6rbbr 278 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
5438, 53mpbid 221 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874   ↾ cres 5040   Fn wfn 5799  ⟶wf 5800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-fun 5806  df-fn 5807  df-f 5808 This theorem is referenced by:  cvmliftlem10  30530  elmapresaun  36352
 Copyright terms: Public domain W3C validator