MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indifdir Structured version   Unicode version

Theorem indifdir 3735
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
Assertion
Ref Expression
indifdir  |-  ( ( A  \  B )  i^i  C )  =  ( ( A  i^i  C )  \  ( B  i^i  C ) )

Proof of Theorem indifdir
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm3.24 890 . . . . . . . 8  |-  -.  (
x  e.  C  /\  -.  x  e.  C
)
21intnan 922 . . . . . . 7  |-  -.  (
x  e.  A  /\  ( x  e.  C  /\  -.  x  e.  C
) )
3 anass 653 . . . . . . 7  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  C
) ) )
42, 3mtbir 300 . . . . . 6  |-  -.  (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C )
54biorfi 408 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  <->  ( (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C ) ) )
6 an32 805 . . . . 5  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
7 andi 875 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  ( -.  x  e.  B  \/  -.  x  e.  C
) )  <->  ( (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C ) ) )
85, 6, 73bitr4i 280 . . . 4  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( -.  x  e.  B  \/  -.  x  e.  C ) ) )
9 ianor 490 . . . . 5  |-  ( -.  ( x  e.  B  /\  x  e.  C
)  <->  ( -.  x  e.  B  \/  -.  x  e.  C )
)
109anbi2i 698 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  (
x  e.  B  /\  x  e.  C )
)  <->  ( ( x  e.  A  /\  x  e.  C )  /\  ( -.  x  e.  B  \/  -.  x  e.  C
) ) )
118, 10bitr4i 255 . . 3  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  ( x  e.  B  /\  x  e.  C ) ) )
12 elin 3655 . . . 4  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  ( x  e.  ( A  \  B
)  /\  x  e.  C ) )
13 eldif 3452 . . . . 5  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
1413anbi1i 699 . . . 4  |-  ( ( x  e.  ( A 
\  B )  /\  x  e.  C )  <->  ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C ) )
1512, 14bitri 252 . . 3  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C ) )
16 eldif 3452 . . . 4  |-  ( x  e.  ( ( A  i^i  C )  \ 
( B  i^i  C
) )  <->  ( x  e.  ( A  i^i  C
)  /\  -.  x  e.  ( B  i^i  C
) ) )
17 elin 3655 . . . . 5  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
18 elin 3655 . . . . . 6  |-  ( x  e.  ( B  i^i  C )  <->  ( x  e.  B  /\  x  e.  C ) )
1918notbii 297 . . . . 5  |-  ( -.  x  e.  ( B  i^i  C )  <->  -.  (
x  e.  B  /\  x  e.  C )
)
2017, 19anbi12i 701 . . . 4  |-  ( ( x  e.  ( A  i^i  C )  /\  -.  x  e.  ( B  i^i  C ) )  <-> 
( ( x  e.  A  /\  x  e.  C )  /\  -.  ( x  e.  B  /\  x  e.  C
) ) )
2116, 20bitri 252 . . 3  |-  ( x  e.  ( ( A  i^i  C )  \ 
( B  i^i  C
) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  ( x  e.  B  /\  x  e.  C ) ) )
2211, 15, 213bitr4i 280 . 2  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  x  e.  ( ( A  i^i  C )  \  ( B  i^i  C ) ) )
2322eqriv 2425 1  |-  ( ( A  \  B )  i^i  C )  =  ( ( A  i^i  C )  \  ( B  i^i  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1870    \ cdif 3439    i^i cin 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-v 3089  df-dif 3445  df-in 3449
This theorem is referenced by:  preddif  5424  fresaun  5771  uniioombllem4  22412
  Copyright terms: Public domain W3C validator