Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  icodisj Structured version   Visualization version   GIF version

Theorem icodisj 12168
 Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icodisj ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)

Proof of Theorem icodisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3758 . . . 4 (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)))
2 elico1 12089 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
323adant3 1074 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
43biimpa 500 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵))
54simp3d 1068 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 < 𝐵)
65adantrr 749 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → 𝑥 < 𝐵)
7 elico1 12089 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
873adant1 1072 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
98biimpa 500 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶))
109simp2d 1067 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
11 simpl2 1058 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ∈ ℝ*)
129simp1d 1066 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ℝ*)
13 xrlenlt 9982 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
1411, 12, 13syl2anc 691 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
1510, 14mpbid 221 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ¬ 𝑥 < 𝐵)
1615adantrl 748 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → ¬ 𝑥 < 𝐵)
176, 16pm2.65da 598 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)))
1817pm2.21d 117 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ∅))
191, 18syl5bi 231 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) → 𝑥 ∈ ∅))
2019ssrdv 3574 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅)
21 ss0 3926 . 2 (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅ → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
2220, 21syl 17 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  (class class class)co 6549  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  [,)cico 12048 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-xr 9957  df-le 9959  df-ico 12052 This theorem is referenced by:  icombl  23139  difico  28935
 Copyright terms: Public domain W3C validator