MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icodisj Structured version   Unicode version

Theorem icodisj 11670
Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icodisj  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )

Proof of Theorem icodisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3683 . . . 4  |-  ( x  e.  ( ( A [,) B )  i^i  ( B [,) C
) )  <->  ( x  e.  ( A [,) B
)  /\  x  e.  ( B [,) C ) ) )
2 elico1 11597 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
323adant3 1016 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
43biimpa 484 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  (
x  e.  RR*  /\  A  <_  x  /\  x  < 
B ) )
54simp3d 1010 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  x  <  B )
65adantrr 716 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  x  <  B
)
7 elico1 11597 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
873adant1 1014 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
98biimpa 484 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  (
x  e.  RR*  /\  B  <_  x  /\  x  < 
C ) )
109simp2d 1009 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  <_  x )
11 simpl2 1000 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  e.  RR* )
129simp1d 1008 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  x  e.  RR* )
13 xrlenlt 9669 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1411, 12, 13syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1510, 14mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  -.  x  <  B )
1615adantrl 715 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  -.  x  <  B )
176, 16pm2.65da 576 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  ( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )
1817pm2.21d 106 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) )  ->  x  e.  (/) ) )
191, 18syl5bi 217 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( ( A [,) B )  i^i  ( B [,) C ) )  ->  x  e.  (/) ) )
2019ssrdv 3505 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) )
21 ss0 3825 . 2  |-  ( ( ( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) 
->  ( ( A [,) B )  i^i  ( B [,) C ) )  =  (/) )
2220, 21syl 16 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    i^i cin 3470    C_ wss 3471   (/)c0 3793   class class class wbr 4456  (class class class)co 6296   RR*cxr 9644    < clt 9645    <_ cle 9646   [,)cico 11556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-xr 9649  df-le 9651  df-ico 11560
This theorem is referenced by:  icombl  22100  difico  27754
  Copyright terms: Public domain W3C validator