MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccval Structured version   Visualization version   GIF version

Theorem iccval 12085
Description: Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iccval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iccval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 12053 . 2 [,] = (𝑦 ∈ ℝ*, 𝑧 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑦𝑥𝑥𝑧)})
21ixxval 12054 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900   class class class wbr 4583  (class class class)co 6549  *cxr 9952  cle 9954  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-xr 9957  df-icc 12053
This theorem is referenced by:  icc0  12094  iccmax  12120  fzval2  12200  ordtrestixx  20836  cnvordtrestixx  29287  areacirclem5  32674
  Copyright terms: Public domain W3C validator