MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval2 Structured version   Visualization version   GIF version

Theorem fzval2 12200
Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))

Proof of Theorem fzval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzval 12199 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2 zssre 11261 . . . . . . 7 ℤ ⊆ ℝ
3 ressxr 9962 . . . . . . 7 ℝ ⊆ ℝ*
42, 3sstri 3577 . . . . . 6 ℤ ⊆ ℝ*
54sseli 3564 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
64sseli 3564 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ*)
7 iccval 12085 . . . . 5 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
85, 6, 7syl2an 493 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀[,]𝑁) = {𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)})
98ineq1d 3775 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀[,]𝑁) ∩ ℤ) = ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ))
10 inrab2 3859 . . . 4 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)}
11 sseqin2 3779 . . . . . 6 (ℤ ⊆ ℝ* ↔ (ℝ* ∩ ℤ) = ℤ)
124, 11mpbi 219 . . . . 5 (ℝ* ∩ ℤ) = ℤ
13 rabeq 3166 . . . . 5 ((ℝ* ∩ ℤ) = ℤ → {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
1412, 13ax-mp 5 . . . 4 {𝑘 ∈ (ℝ* ∩ ℤ) ∣ (𝑀𝑘𝑘𝑁)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
1510, 14eqtri 2632 . . 3 ({𝑘 ∈ ℝ* ∣ (𝑀𝑘𝑘𝑁)} ∩ ℤ) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)}
169, 15syl6req 2661 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ((𝑀[,]𝑁) ∩ ℤ))
171, 16eqtrd 2644 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  cin 3539  wss 3540   class class class wbr 4583  (class class class)co 6549  cr 9814  *cxr 9952  cle 9954  cz 11254  [,]cicc 12049  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-xr 9957  df-neg 10148  df-z 11255  df-icc 12053  df-fz 12198
This theorem is referenced by:  dvfsumle  23588  dvfsumabs  23590  taylplem1  23921  taylplem2  23922  taylpfval  23923  dvtaylp  23928  ppisval  24630
  Copyright terms: Public domain W3C validator