Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoif Structured version   Visualization version   GIF version

Theorem hsphoif 39466
 Description: 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoif.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
hsphoif.a (𝜑𝐴 ∈ ℝ)
hsphoif.x (𝜑𝑋𝑉)
hsphoif.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoif (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑥   𝐵,𝑎,𝑗   𝑋,𝑎,𝑗,𝑥   𝑌,𝑎,𝑥   𝜑,𝑎,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑎)   𝑉(𝑥,𝑗,𝑎)   𝑌(𝑗)

Proof of Theorem hsphoif
StepHypRef Expression
1 hsphoif.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
21ffvelrnda 6267 . . . 4 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
3 hsphoif.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑗𝑋) → 𝐴 ∈ ℝ)
52, 4ifcld 4081 . . . 4 ((𝜑𝑗𝑋) → if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴) ∈ ℝ)
62, 5ifcld 4081 . . 3 ((𝜑𝑗𝑋) → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) ∈ ℝ)
7 eqid 2610 . . 3 (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
86, 7fmptd 6292 . 2 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ)
9 hsphoif.h . . . . . 6 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
109a1i 11 . . . . 5 (𝜑𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))))))
11 breq2 4587 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑎𝑗) ≤ 𝑥 ↔ (𝑎𝑗) ≤ 𝐴))
12 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
1311, 12ifbieq2d 4061 . . . . . . . . 9 (𝑥 = 𝐴 → if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥) = if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))
1413ifeq2d 4055 . . . . . . . 8 (𝑥 = 𝐴 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)) = if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))
1514mpteq2dv 4673 . . . . . . 7 (𝑥 = 𝐴 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))))
1615mpteq2dv 4673 . . . . . 6 (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
1716adantl 481 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
18 ovex 6577 . . . . . . 7 (ℝ ↑𝑚 𝑋) ∈ V
1918mptex 6390 . . . . . 6 (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V
2019a1i 11 . . . . 5 (𝜑 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V)
2110, 17, 3, 20fvmptd 6197 . . . 4 (𝜑 → (𝐻𝐴) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
22 fveq1 6102 . . . . . . 7 (𝑎 = 𝐵 → (𝑎𝑗) = (𝐵𝑗))
2322breq1d 4593 . . . . . . . 8 (𝑎 = 𝐵 → ((𝑎𝑗) ≤ 𝐴 ↔ (𝐵𝑗) ≤ 𝐴))
2423, 22ifbieq1d 4059 . . . . . . 7 (𝑎 = 𝐵 → if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴) = if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))
2522, 24ifeq12d 4056 . . . . . 6 (𝑎 = 𝐵 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)) = if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
2625mpteq2dv 4673 . . . . 5 (𝑎 = 𝐵 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
2726adantl 481 . . . 4 ((𝜑𝑎 = 𝐵) → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
28 reex 9906 . . . . . . . 8 ℝ ∈ V
2928a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
30 hsphoif.x . . . . . . 7 (𝜑𝑋𝑉)
3129, 30jca 553 . . . . . 6 (𝜑 → (ℝ ∈ V ∧ 𝑋𝑉))
32 elmapg 7757 . . . . . 6 ((ℝ ∈ V ∧ 𝑋𝑉) → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3331, 32syl 17 . . . . 5 (𝜑 → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
341, 33mpbird 246 . . . 4 (𝜑𝐵 ∈ (ℝ ↑𝑚 𝑋))
35 mptexg 6389 . . . . 5 (𝑋𝑉 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3630, 35syl 17 . . . 4 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3721, 27, 34, 36fvmptd 6197 . . 3 (𝜑 → ((𝐻𝐴)‘𝐵) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
3837feq1d 5943 . 2 (𝜑 → (((𝐻𝐴)‘𝐵):𝑋⟶ℝ ↔ (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ))
398, 38mpbird 246 1 (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℝcr 9814   ≤ cle 9954 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746 This theorem is referenced by:  hsphoidmvle2  39475  hsphoidmvle  39476  sge0hsphoire  39479  hoidmvlelem1  39485  hoidmvlelem2  39486  hoidmvlelem4  39488  hspmbllem1  39516  hspmbllem2  39517
 Copyright terms: Public domain W3C validator