Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl2 Structured version   Visualization version   GIF version

Theorem homarcl2 16508
 Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
homarcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
homarcl2 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))

Proof of Theorem homarcl2
StepHypRef Expression
1 elfvdm 6130 . . . 4 (𝐹 ∈ (𝐻‘⟨𝑋, 𝑌⟩) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
2 df-ov 6552 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
31, 2eleq2s 2706 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
4 homahom.h . . . . 5 𝐻 = (Homa𝐶)
5 homarcl2.b . . . . 5 𝐵 = (Base‘𝐶)
64homarcl 16501 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 5, 6homaf 16503 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
8 fdm 5964 . . . 4 (𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V) → dom 𝐻 = (𝐵 × 𝐵))
97, 8syl 17 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → dom 𝐻 = (𝐵 × 𝐵))
103, 9eleqtrd 2690 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 opelxp 5070 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵) ↔ (𝑋𝐵𝑌𝐵))
1210, 11sylib 207 1 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  𝒫 cpw 4108  ⟨cop 4131   × cxp 5036  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  Homachoma 16496 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-homa 16499 This theorem is referenced by:  homarel  16509  homa1  16510  homahom2  16511  homadm  16513  homacd  16514  arwdm  16520  arwcd  16521  coahom  16543  arwlid  16545  arwrid  16546  arwass  16547
 Copyright terms: Public domain W3C validator