MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl2 Structured version   Unicode version

Theorem homarcl2 15223
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h  |-  H  =  (Homa
`  C )
homarcl2.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
homarcl2  |-  ( F  e.  ( X H Y )  ->  ( X  e.  B  /\  Y  e.  B )
)

Proof of Theorem homarcl2
StepHypRef Expression
1 elfvdm 5892 . . . 4  |-  ( F  e.  ( H `  <. X ,  Y >. )  ->  <. X ,  Y >.  e.  dom  H )
2 df-ov 6288 . . . 4  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
31, 2eleq2s 2575 . . 3  |-  ( F  e.  ( X H Y )  ->  <. X ,  Y >.  e.  dom  H
)
4 homahom.h . . . . 5  |-  H  =  (Homa
`  C )
5 homarcl2.b . . . . 5  |-  B  =  ( Base `  C
)
64homarcl 15216 . . . . 5  |-  ( F  e.  ( X H Y )  ->  C  e.  Cat )
74, 5, 6homaf 15218 . . . 4  |-  ( F  e.  ( X H Y )  ->  H : ( B  X.  B ) --> ~P (
( B  X.  B
)  X.  _V )
)
8 fdm 5735 . . . 4  |-  ( H : ( B  X.  B ) --> ~P (
( B  X.  B
)  X.  _V )  ->  dom  H  =  ( B  X.  B ) )
97, 8syl 16 . . 3  |-  ( F  e.  ( X H Y )  ->  dom  H  =  ( B  X.  B ) )
103, 9eleqtrd 2557 . 2  |-  ( F  e.  ( X H Y )  ->  <. X ,  Y >.  e.  ( B  X.  B ) )
11 opelxp 5029 . 2  |-  ( <. X ,  Y >.  e.  ( B  X.  B
)  <->  ( X  e.  B  /\  Y  e.  B ) )
1210, 11sylib 196 1  |-  ( F  e.  ( X H Y )  ->  ( X  e.  B  /\  Y  e.  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   ~Pcpw 4010   <.cop 4033    X. cxp 4997   dom cdm 4999   -->wf 5584   ` cfv 5588  (class class class)co 6285   Basecbs 14493  Homachoma 15211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-homa 15214
This theorem is referenced by:  homarel  15224  homa1  15225  homahom2  15226  homadm  15228  homacd  15229  arwdm  15235  arwcd  15236  coahom  15258  arwlid  15260  arwrid  15261  arwass  15262
  Copyright terms: Public domain W3C validator