Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidlcan | Structured version Visualization version GIF version |
Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.) |
Ref | Expression |
---|---|
grpidrcan.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidrcan.p | ⊢ + = (+g‘𝐺) |
grpidrcan.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidlcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = 𝑋 ↔ 𝑍 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidrcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpidrcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpidrcan.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grplid 17275 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
5 | 4 | 3adant3 1074 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 5 | eqeq2d 2620 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ (𝑍 + 𝑋) = 𝑋)) |
7 | simp1 1054 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝐺 ∈ Grp) | |
8 | simp3 1056 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
9 | 1, 3 | grpidcl 17273 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
10 | 9 | 3ad2ant1 1075 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | simp2 1055 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | grprcan 17278 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑍 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 )) |
13 | 7, 8, 10, 11, 12 | syl13anc 1320 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 )) |
14 | 6, 13 | bitr3d 269 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = 𝑋 ↔ 𝑍 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 0gc0g 15923 Grpcgrp 17245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-riota 6511 df-ov 6552 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 |
This theorem is referenced by: grpidssd 17314 |
Copyright terms: Public domain | W3C validator |