MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchi Structured version   Visualization version   GIF version

Theorem gchi 9325
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchi ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)

Proof of Theorem gchi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 7848 . . . . . . 7 Rel ≺
21brrelexi 5082 . . . . . 6 (𝐵 ≺ 𝒫 𝐴𝐵 ∈ V)
32adantl 481 . . . . 5 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐵 ∈ V)
4 breq2 4587 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
5 breq1 4586 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 ≺ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
64, 5anbi12d 743 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)))
76spcegv 3267 . . . . 5 (𝐵 ∈ V → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
83, 7mpcom 37 . . . 4 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴))
9 df-ex 1696 . . . 4 (∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
108, 9sylib 207 . . 3 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
11 elgch 9323 . . . . . 6 (𝐴 ∈ GCH → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1211ibi 255 . . . . 5 (𝐴 ∈ GCH → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1312orcomd 402 . . . 4 (𝐴 ∈ GCH → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ∨ 𝐴 ∈ Fin))
1413ord 391 . . 3 (𝐴 ∈ GCH → (¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
1510, 14syl5 33 . 2 (𝐴 ∈ GCH → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
16153impib 1254 1 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  csdm 7840  Fincfn 7841  GCHcgch 9321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-dom 7843  df-sdom 7844  df-gch 9322
This theorem is referenced by:  gchen1  9326  gchen2  9327  gchpwdom  9371  gchaleph  9372
  Copyright terms: Public domain W3C validator