MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchi Structured version   Unicode version

Theorem gchi 8905
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchi  |-  ( ( A  e. GCH  /\  A  ~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin )

Proof of Theorem gchi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 relsdom 7430 . . . . . . 7  |-  Rel  ~<
21brrelexi 4990 . . . . . 6  |-  ( B 
~<  ~P A  ->  B  e.  _V )
32adantl 466 . . . . 5  |-  ( ( A  ~<  B  /\  B  ~<  ~P A )  ->  B  e.  _V )
4 breq2 4407 . . . . . . 7  |-  ( x  =  B  ->  ( A  ~<  x  <->  A  ~<  B ) )
5 breq1 4406 . . . . . . 7  |-  ( x  =  B  ->  (
x  ~<  ~P A  <->  B  ~<  ~P A ) )
64, 5anbi12d 710 . . . . . 6  |-  ( x  =  B  ->  (
( A  ~<  x  /\  x  ~<  ~P A
)  <->  ( A  ~<  B  /\  B  ~<  ~P A
) ) )
76spcegv 3164 . . . . 5  |-  ( B  e.  _V  ->  (
( A  ~<  B  /\  B  ~<  ~P A )  ->  E. x ( A 
~<  x  /\  x  ~<  ~P A ) ) )
83, 7mpcom 36 . . . 4  |-  ( ( A  ~<  B  /\  B  ~<  ~P A )  ->  E. x ( A 
~<  x  /\  x  ~<  ~P A ) )
9 df-ex 1588 . . . 4  |-  ( E. x ( A  ~<  x  /\  x  ~<  ~P A
)  <->  -.  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) )
108, 9sylib 196 . . 3  |-  ( ( A  ~<  B  /\  B  ~<  ~P A )  ->  -.  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) )
11 elgch 8903 . . . . . 6  |-  ( A  e. GCH  ->  ( A  e. GCH  <->  ( A  e.  Fin  \/  A. x  -.  ( A 
~<  x  /\  x  ~<  ~P A ) ) ) )
1211ibi 241 . . . . 5  |-  ( A  e. GCH  ->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
1312orcomd 388 . . . 4  |-  ( A  e. GCH  ->  ( A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
)  \/  A  e. 
Fin ) )
1413ord 377 . . 3  |-  ( A  e. GCH  ->  ( -.  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
)  ->  A  e.  Fin ) )
1510, 14syl5 32 . 2  |-  ( A  e. GCH  ->  ( ( A 
~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin ) )
16153impib 1186 1  |-  ( ( A  e. GCH  /\  A  ~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   _Vcvv 3078   ~Pcpw 3971   class class class wbr 4403    ~< csdm 7422   Fincfn 7423  GCHcgch 8901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-xp 4957  df-rel 4958  df-dom 7425  df-sdom 7426  df-gch 8902
This theorem is referenced by:  gchen1  8906  gchen2  8907  gchpwdom  8951  gchaleph  8952
  Copyright terms: Public domain W3C validator