Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funiunfvf Structured version   Visualization version   GIF version

Theorem funiunfvf 6411
 Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 6410 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.)
Hypothesis
Ref Expression
funiunfvf.1 𝑥𝐹
Assertion
Ref Expression
funiunfvf (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funiunfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4 𝑥𝐹
2 nfcv 2751 . . . 4 𝑥𝑧
31, 2nffv 6110 . . 3 𝑥(𝐹𝑧)
4 nfcv 2751 . . 3 𝑧(𝐹𝑥)
5 fveq2 6103 . . 3 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
63, 4, 5cbviun 4493 . 2 𝑧𝐴 (𝐹𝑧) = 𝑥𝐴 (𝐹𝑥)
7 funiunfv 6410 . 2 (Fun 𝐹 𝑧𝐴 (𝐹𝑧) = (𝐹𝐴))
86, 7syl5eqr 2658 1 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  Ⅎwnfc 2738  ∪ cuni 4372  ∪ ciun 4455   “ cima 5041  Fun wfun 5798  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator