Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunirn Structured version   Visualization version   GIF version

Theorem fnunirn 6415
 Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnunirn (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝐹

Proof of Theorem fnunirn
StepHypRef Expression
1 fnfun 5902 . . 3 (𝐹 Fn 𝐼 → Fun 𝐹)
2 elunirn 6413 . . 3 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
31, 2syl 17 . 2 (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
4 fndm 5904 . . 3 (𝐹 Fn 𝐼 → dom 𝐹 = 𝐼)
54rexeqdv 3122 . 2 (𝐹 Fn 𝐼 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
63, 5bitrd 267 1 (𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∈ wcel 1977  ∃wrex 2897  ∪ cuni 4372  dom cdm 5038  ran crn 5039  Fun wfun 5798   Fn wfn 5799  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812 This theorem is referenced by:  itunitc  9126  wunex2  9439  mreunirn  16084  arwhoma  16518  filunirn  21496  xmetunirn  21952  abfmpunirn  28832  cmpcref  29245  neibastop2lem  31525  stoweidlem59  38952
 Copyright terms: Public domain W3C validator