Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2lem Structured version   Visualization version   GIF version

Theorem neibastop2lem 31525
 Description: Lemma for neibastop2 31526. (Contributed by Jeff Hankins, 12-Sep-2009.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
neibastop2.p (𝜑𝑃𝑋)
neibastop2.n (𝜑𝑁𝑋)
neibastop2.f (𝜑𝑈 ∈ (𝐹𝑃))
neibastop2.u (𝜑𝑈𝑁)
neibastop2.g 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
neibastop2.s 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
Assertion
Ref Expression
neibastop2lem (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Distinct variable groups:   𝑡,𝑓,𝑣,𝑦,𝑧,𝐺   𝑣,𝑢,𝑥,𝑦,𝑧,𝐽   𝑓,𝑜,𝑢,𝑤,𝑥,𝑃,𝑡,𝑣,𝑦,𝑧   𝑓,𝑁,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑜,𝑡,𝑢,𝑣,𝑥,𝑦   𝑈,𝑓,𝑥,𝑦,𝑧   𝑓,𝑎,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑓,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑎)   𝑃(𝑎)   𝑆(𝑧,𝑤,𝑎)   𝑈(𝑤,𝑣,𝑢,𝑡,𝑜,𝑎)   𝐺(𝑥,𝑤,𝑢,𝑜,𝑎)   𝐽(𝑤,𝑡,𝑓,𝑜,𝑎)   𝑁(𝑎)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑜,𝑎)

Proof of Theorem neibastop2lem
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop2.s . . . . 5 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
2 ssrab2 3650 . . . . 5 {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑋
31, 2eqsstri 3598 . . . 4 𝑆𝑋
4 neibastop1.1 . . . . 5 (𝜑𝑋𝑉)
5 elpw2g 4754 . . . . 5 (𝑋𝑉 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
64, 5syl 17 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
73, 6mpbiri 247 . . 3 (𝜑𝑆 ∈ 𝒫 𝑋)
8 fveq2 6103 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
98ineq1d 3775 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑥) ∩ 𝒫 𝑓))
109neeq1d 2841 . . . . . . 7 (𝑦 = 𝑥 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1110rexbidv 3034 . . . . . 6 (𝑦 = 𝑥 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1211, 1elrab2 3333 . . . . 5 (𝑥𝑆 ↔ (𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
13 frfnom 7417 . . . . . . . . . 10 (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω
14 neibastop2.g . . . . . . . . . . 11 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
1514fneq1i 5899 . . . . . . . . . 10 (𝐺 Fn ω ↔ (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω)
1613, 15mpbir 220 . . . . . . . . 9 𝐺 Fn ω
17 fnunirn 6415 . . . . . . . . 9 (𝐺 Fn ω → (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
19 n0 3890 . . . . . . . . . 10 (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
20 inss1 3795 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∩ 𝒫 𝑓) ⊆ (𝐹𝑥)
2120sseli 3564 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → 𝑣 ∈ (𝐹𝑥))
22 neibastop1.6 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2322anassrs 678 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ (𝐹𝑥)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2421, 23sylan2 490 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2524adantrl 748 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
26 simprl 790 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ (𝐹𝑥))
27 fvssunirn 6127 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑥) ⊆ ran 𝐹
28 neibastop1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
29 frn 5966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}) → ran 𝐹 ⊆ (𝒫 𝒫 𝑋 ∖ {∅}))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐹 ⊆ (𝒫 𝒫 𝑋 ∖ {∅}))
3130difss2d 3702 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran 𝐹 ⊆ 𝒫 𝒫 𝑋)
32 sspwuni 4547 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ran 𝐹 ⊆ 𝒫 𝑋)
3331, 32sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 ran 𝐹 ⊆ 𝒫 𝑋)
3433ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐹 ⊆ 𝒫 𝑋)
3527, 34syl5ss 3579 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐹𝑥) ⊆ 𝒫 𝑋)
3635sselda 3568 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡 ∈ 𝒫 𝑋)
3736elpwid 4118 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡𝑋)
3837sselda 3568 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → 𝑦𝑋)
3938adantrr 749 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑋)
40 simprlr 799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑓 ∈ (𝐺𝑘))
41 rspe 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝑋𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
4241ad2ant2l 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
43 eliun 4460 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧))
44 pweq 4111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑓 → 𝒫 𝑧 = 𝒫 𝑓)
4544ineq2d 3776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑓 → ((𝐹𝑥) ∩ 𝒫 𝑧) = ((𝐹𝑥) ∩ 𝒫 𝑓))
4645eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑓 → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4746rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑓 → (∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4843, 47syl5bb 271 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑓 → (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4948rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (𝐺𝑘) ∧ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
5040, 42, 49syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
51 eliun 4460 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
5250, 51sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
53 simpll 786 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝜑)
54 simprll 798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑘 ∈ ω)
55 fvssunirn 6127 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺𝑘) ⊆ ran 𝐺
56 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
5714fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺‘∅) = ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅)
58 snex 4835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 {𝑈} ∈ V
59 fr0g 7418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ({𝑈} ∈ V → ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈})
6058, 59ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈}
6157, 60eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐺‘∅) = {𝑈}
6256, 61syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = ∅ → (𝐺𝑛) = {𝑈})
6362sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = ∅ → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ {𝑈} ⊆ 𝒫 𝑈))
64 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
6564sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺𝑘) ⊆ 𝒫 𝑈))
66 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = suc 𝑘 → (𝐺𝑛) = (𝐺‘suc 𝑘))
6766sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = suc 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
68 neibastop2.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑈 ∈ (𝐹𝑃))
69 pwidg 4121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ 𝒫 𝑈)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝑈 ∈ 𝒫 𝑈)
7170snssd 4281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → {𝑈} ⊆ 𝒫 𝑈)
72 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑘 ∈ ω)
7368adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑈 ∈ (𝐹𝑃))
74 pwexg 4776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑈 ∈ (𝐹𝑃) → 𝒫 𝑈 ∈ V)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝒫 𝑈 ∈ V)
76 inss2 3796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑧
77 elpwi 4117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑧 ∈ 𝒫 𝑈𝑧𝑈)
7877adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑧𝑈)
79 sspwb 4844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑧𝑈 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑈)
8078, 79sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝒫 𝑧 ⊆ 𝒫 𝑈)
8176, 80syl5ss 3579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑧 ∈ 𝒫 𝑈) → ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8281ralrimivw 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑧 ∈ 𝒫 𝑈) → ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
83 iunss 4497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ( 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8482, 83sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8584ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
86 ssralv 3629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐺𝑘) ⊆ 𝒫 𝑈 → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8786adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈) → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8885, 87mpan9 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
89 iunss 4497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ( 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
9088, 89sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
9175, 90ssexd 4733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V)
92 iuneq1 4470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = 𝑎 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
93 iuneq1 4470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = (𝐺𝑘) → 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9414, 92, 93frsucmpt2 7422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9572, 91, 94syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9695, 90eqsstrd 3602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)
9796expr 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑘 ∈ ω) → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
9897expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ω → (𝜑 → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)))
9963, 65, 67, 71, 98finds2 6986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ⊆ 𝒫 𝑈))
100 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐺𝑛) ∈ V
101100elpw 4114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑛) ∈ 𝒫 𝒫 𝑈 ↔ (𝐺𝑛) ⊆ 𝒫 𝑈)
10299, 101syl6ibr 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
103102com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
104103ralrimiv 2948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
105 ffnfv 6295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10616, 105mpbiran 955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
107104, 106sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐺:ω⟶𝒫 𝒫 𝑈)
108 frn 5966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐺:ω⟶𝒫 𝒫 𝑈 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈)
110 sspwuni 4547 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ran 𝐺 ⊆ 𝒫 𝑈)
111109, 110sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 ran 𝐺 ⊆ 𝒫 𝑈)
112111ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐺 ⊆ 𝒫 𝑈)
11355, 112syl5ss 3579 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺𝑘) ⊆ 𝒫 𝑈)
11453, 54, 113, 95syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
11552, 114eleqtrrd 2691 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ∈ (𝐺‘suc 𝑘))
116 peano2 6978 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
11754, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → suc 𝑘 ∈ ω)
118 fnfvelrn 6264 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn ω ∧ suc 𝑘 ∈ ω) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
11916, 117, 118sylancr 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
120 elunii 4377 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ (𝐺‘suc 𝑘) ∧ (𝐺‘suc 𝑘) ∈ ran 𝐺) → 𝑣 ran 𝐺)
121115, 119, 120syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ran 𝐺)
122121ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑣 ran 𝐺)
123 simprr 792 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
124 pweq 4111 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑣 → 𝒫 𝑓 = 𝒫 𝑣)
125124ineq2d 3776 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑣 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑣))
126125neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑣 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅))
127126rspcev 3282 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ran 𝐺 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
128122, 123, 127syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
1291rabeq2i 3170 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑆 ↔ (𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
13039, 128, 129sylanbrc 695 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑆)
131130expr 641 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → (((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → 𝑦𝑆))
132131ralimdva 2945 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → (∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → ∀𝑦𝑡 𝑦𝑆))
133132impr 647 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∀𝑦𝑡 𝑦𝑆)
134 dfss3 3558 . . . . . . . . . . . . . . . 16 (𝑡𝑆 ↔ ∀𝑦𝑡 𝑦𝑆)
135133, 134sylibr 223 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡𝑆)
136 selpw 4115 . . . . . . . . . . . . . . 15 (𝑡 ∈ 𝒫 𝑆𝑡𝑆)
137135, 136sylibr 223 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ 𝒫 𝑆)
138 inelcm 3984 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐹𝑥) ∧ 𝑡 ∈ 𝒫 𝑆) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13926, 137, 138syl2anc 691 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
14025, 139rexlimddv 3017 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
141140expr 641 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
142141exlimdv 1848 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
14319, 142syl5bi 231 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
144143rexlimdvaa 3014 . . . . . . . 8 ((𝜑𝑥𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
14518, 144syl5bi 231 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
146145rexlimdv 3012 . . . . . 6 ((𝜑𝑥𝑋) → (∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
147146expimpd 627 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
14812, 147syl5bi 231 . . . 4 (𝜑 → (𝑥𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
149148ralrimiv 2948 . . 3 (𝜑 → ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
150 pweq 4111 . . . . . . 7 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
151150ineq2d 3776 . . . . . 6 (𝑜 = 𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑆))
152151neeq1d 2841 . . . . 5 (𝑜 = 𝑆 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
153152raleqbi1dv 3123 . . . 4 (𝑜 = 𝑆 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
154 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
155153, 154elrab2 3333 . . 3 (𝑆𝐽 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
1567, 149, 155sylanbrc 695 . 2 (𝜑𝑆𝐽)
157 neibastop2.p . . 3 (𝜑𝑃𝑋)
158 snidg 4153 . . . . . 6 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ {𝑈})
15968, 158syl 17 . . . . 5 (𝜑𝑈 ∈ {𝑈})
160 peano1 6977 . . . . . . 7 ∅ ∈ ω
161 fnfvelrn 6264 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
16216, 160, 161mp2an 704 . . . . . 6 (𝐺‘∅) ∈ ran 𝐺
16361, 162eqeltrri 2685 . . . . 5 {𝑈} ∈ ran 𝐺
164 elunii 4377 . . . . 5 ((𝑈 ∈ {𝑈} ∧ {𝑈} ∈ ran 𝐺) → 𝑈 ran 𝐺)
165159, 163, 164sylancl 693 . . . 4 (𝜑𝑈 ran 𝐺)
166 inelcm 3984 . . . . 5 ((𝑈 ∈ (𝐹𝑃) ∧ 𝑈 ∈ 𝒫 𝑈) → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
16768, 70, 166syl2anc 691 . . . 4 (𝜑 → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
168 pweq 4111 . . . . . . 7 (𝑓 = 𝑈 → 𝒫 𝑓 = 𝒫 𝑈)
169168ineq2d 3776 . . . . . 6 (𝑓 = 𝑈 → ((𝐹𝑃) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑈))
170169neeq1d 2841 . . . . 5 (𝑓 = 𝑈 → (((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅))
171170rspcev 3282 . . . 4 ((𝑈 ran 𝐺 ∧ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
172165, 167, 171syl2anc 691 . . 3 (𝜑 → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
173 fveq2 6103 . . . . . . 7 (𝑦 = 𝑃 → (𝐹𝑦) = (𝐹𝑃))
174173ineq1d 3775 . . . . . 6 (𝑦 = 𝑃 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑓))
175174neeq1d 2841 . . . . 5 (𝑦 = 𝑃 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
176175rexbidv 3034 . . . 4 (𝑦 = 𝑃 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
177176, 1elrab2 3333 . . 3 (𝑃𝑆 ↔ (𝑃𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
178157, 172, 177sylanbrc 695 . 2 (𝜑𝑃𝑆)
179 eluni2 4376 . . . . . . 7 (𝑓 ran 𝐺 ↔ ∃𝑧 ∈ ran 𝐺 𝑓𝑧)
180 eleq2 2677 . . . . . . . . . 10 (𝑧 = (𝐺𝑘) → (𝑓𝑧𝑓 ∈ (𝐺𝑘)))
181180rexrn 6269 . . . . . . . . 9 (𝐺 Fn ω → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
18216, 181ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
183107adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → 𝐺:ω⟶𝒫 𝒫 𝑈)
184183ffvelrnda 6267 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝒫 𝒫 𝑈)
185184elpwid 4118 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ⊆ 𝒫 𝑈)
186185sselda 3568 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → 𝑓 ∈ 𝒫 𝑈)
187186adantrr 749 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓 ∈ 𝒫 𝑈)
188187elpwid 4118 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑈)
189 neibastop2.u . . . . . . . . . . . . 13 (𝜑𝑈𝑁)
190189ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑈𝑁)
191188, 190sstrd 3578 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑁)
192 n0 3890 . . . . . . . . . . . . 13 (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓))
193 elin 3758 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) ↔ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))
194 simprrr 801 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ 𝒫 𝑓)
195194elpwid 4118 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣𝑓)
196 simpllr 795 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑋)
197 neibastop1.5 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
198197expr 641 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
199198ralrimiva 2949 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
200199ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
201 simprrl 800 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ (𝐹𝑦))
202 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
203202eleq2d 2673 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑣 ∈ (𝐹𝑥) ↔ 𝑣 ∈ (𝐹𝑦)))
204 elequ1 1984 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
205203, 204imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) ↔ (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
206205rspcv 3278 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → (∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) → (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
207196, 200, 201, 206syl3c 64 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑣)
208195, 207sseldd 3569 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑓)
209208expr 641 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → ((𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓) → 𝑦𝑓))
210193, 209syl5bi 231 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
211210exlimdv 1848 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
212192, 211syl5bi 231 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑓))
213212impr 647 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑓)
214191, 213sseldd 3569 . . . . . . . . . 10 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑁)
215214exp32 629 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
216215rexlimdva 3013 . . . . . . . 8 ((𝜑𝑦𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
217182, 216syl5bi 231 . . . . . . 7 ((𝜑𝑦𝑋) → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
218179, 217syl5bi 231 . . . . . 6 ((𝜑𝑦𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
219218rexlimdv 3012 . . . . 5 ((𝜑𝑦𝑋) → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁))
2202193impia 1253 . . . 4 ((𝜑𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅) → 𝑦𝑁)
221220rabssdv 3645 . . 3 (𝜑 → {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑁)
2221, 221syl5eqss 3612 . 2 (𝜑𝑆𝑁)
223 eleq2 2677 . . . 4 (𝑢 = 𝑆 → (𝑃𝑢𝑃𝑆))
224 sseq1 3589 . . . 4 (𝑢 = 𝑆 → (𝑢𝑁𝑆𝑁))
225223, 224anbi12d 743 . . 3 (𝑢 = 𝑆 → ((𝑃𝑢𝑢𝑁) ↔ (𝑃𝑆𝑆𝑁)))
226225rspcev 3282 . 2 ((𝑆𝐽 ∧ (𝑃𝑆𝑆𝑁)) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
227156, 178, 222, 226syl12anc 1316 1 (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∪ cuni 4372  ∪ ciun 4455   ↦ cmpt 4643  ran crn 5039   ↾ cres 5040  suc csuc 5642   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  ωcom 6957  reccrdg 7392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393 This theorem is referenced by:  neibastop2  31526
 Copyright terms: Public domain W3C validator