MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgval Structured version   Visualization version   GIF version

Theorem fgval 21484
Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgval (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fgval
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fg 19565 . . 3 filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅})
21a1i 11 . 2 (𝐹 ∈ (fBas‘𝑋) → filGen = (𝑣 ∈ V, 𝑓 ∈ (fBas‘𝑣) ↦ {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅}))
3 pweq 4111 . . . . 5 (𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋)
43adantr 480 . . . 4 ((𝑣 = 𝑋𝑓 = 𝐹) → 𝒫 𝑣 = 𝒫 𝑋)
5 ineq1 3769 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥))
65neeq1d 2841 . . . . 5 (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
76adantl 481 . . . 4 ((𝑣 = 𝑋𝑓 = 𝐹) → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
84, 7rabeqbidv 3168 . . 3 ((𝑣 = 𝑋𝑓 = 𝐹) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
98adantl 481 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑣 = 𝑋𝑓 = 𝐹)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑓 ∩ 𝒫 𝑥) ≠ ∅} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
10 fveq2 6103 . . 3 (𝑣 = 𝑋 → (fBas‘𝑣) = (fBas‘𝑋))
1110adantl 481 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑣 = 𝑋) → (fBas‘𝑣) = (fBas‘𝑋))
12 elfvex 6131 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
13 id 22 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
14 elfvdm 6130 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
15 pwexg 4776 . . 3 (𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V)
16 rabexg 4739 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V)
1714, 15, 163syl 18 . 2 (𝐹 ∈ (fBas‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅} ∈ V)
182, 9, 11, 12, 13, 17ovmpt2dx 6685 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cin 3539  c0 3874  𝒫 cpw 4108  dom cdm 5038  cfv 5804  (class class class)co 6549  cmpt2 6551  fBascfbas 19555  filGencfg 19556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fg 19565
This theorem is referenced by:  elfg  21485  restmetu  22185  neifg  31536
  Copyright terms: Public domain W3C validator