Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1owe | Structured version Visualization version GIF version |
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
f1owe.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} |
Ref | Expression |
---|---|
f1owe | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
2 | 1 | breq1d 4593 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑦))) |
3 | fveq2 6103 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) | |
4 | 3 | breq2d 4595 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
5 | f1owe.1 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} | |
6 | 2, 4, 5 | brabg 4919 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
7 | 6 | rgen2a 2960 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)) |
8 | df-isom 5813 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)))) | |
9 | isowe 6499 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | |
10 | 8, 9 | sylbir 224 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
11 | 7, 10 | mpan2 703 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
12 | 11 | biimprd 237 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∀wral 2896 class class class wbr 4583 {copab 4642 We wwe 4996 –1-1-onto→wf1o 5803 ‘cfv 5804 Isom wiso 5805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 |
This theorem is referenced by: wemapwe 8477 dfac8b 8737 ac10ct 8740 dnwech 36636 |
Copyright terms: Public domain | W3C validator |