MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1owe Structured version   Unicode version

Theorem f1owe 6145
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
f1owe.1  |-  R  =  { <. x ,  y
>.  |  ( F `  x ) S ( F `  y ) }
Assertion
Ref Expression
f1owe  |-  ( F : A -1-1-onto-> B  ->  ( S  We  B  ->  R  We  A ) )
Distinct variable groups:    x, y, S    x, F, y
Allowed substitution hints:    A( x, y)    B( x, y)    R( x, y)

Proof of Theorem f1owe
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5791 . . . . . 6  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
21breq1d 4402 . . . . 5  |-  ( x  =  z  ->  (
( F `  x
) S ( F `
 y )  <->  ( F `  z ) S ( F `  y ) ) )
3 fveq2 5791 . . . . . 6  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
43breq2d 4404 . . . . 5  |-  ( y  =  w  ->  (
( F `  z
) S ( F `
 y )  <->  ( F `  z ) S ( F `  w ) ) )
5 f1owe.1 . . . . 5  |-  R  =  { <. x ,  y
>.  |  ( F `  x ) S ( F `  y ) }
62, 4, 5brabg 4708 . . . 4  |-  ( ( z  e.  A  /\  w  e.  A )  ->  ( z R w  <-> 
( F `  z
) S ( F `
 w ) ) )
76rgen2a 2892 . . 3  |-  A. z  e.  A  A. w  e.  A  ( z R w  <->  ( F `  z ) S ( F `  w ) )
8 df-isom 5527 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  <-> 
( F : A -1-1-onto-> B  /\  A. z  e.  A  A. w  e.  A  ( z R w  <-> 
( F `  z
) S ( F `
 w ) ) ) )
9 isowe 6141 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( R  We  A 
<->  S  We  B ) )
108, 9sylbir 213 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  A. z  e.  A  A. w  e.  A  (
z R w  <->  ( F `  z ) S ( F `  w ) ) )  ->  ( R  We  A  <->  S  We  B ) )
117, 10mpan2 671 . 2  |-  ( F : A -1-1-onto-> B  ->  ( R  We  A  <->  S  We  B
) )
1211biimprd 223 1  |-  ( F : A -1-1-onto-> B  ->  ( S  We  B  ->  R  We  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   A.wral 2795   class class class wbr 4392   {copab 4449    We wwe 4778   -1-1-onto->wf1o 5517   ` cfv 5518    Isom wiso 5519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-opab 4451  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527
This theorem is referenced by:  wemapwe  8031  wemapweOLD  8032  dfac8b  8304  ac10ct  8307  dnwech  29541
  Copyright terms: Public domain W3C validator