MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oresrab Structured version   Visualization version   GIF version

Theorem f1oresrab 6302
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
Hypotheses
Ref Expression
f1oresrab.1 𝐹 = (𝑥𝐴𝐶)
f1oresrab.2 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresrab.3 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))
Assertion
Ref Expression
f1oresrab (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐶(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem f1oresrab
StepHypRef Expression
1 f1oresrab.2 . . . 4 (𝜑𝐹:𝐴1-1-onto𝐵)
2 f1ofun 6052 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
3 funcnvcnv 5870 . . . 4 (Fun 𝐹 → Fun 𝐹)
41, 2, 33syl 18 . . 3 (𝜑 → Fun 𝐹)
5 f1ocnv 6062 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
6 f1of1 6049 . . . . . 6 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵1-1𝐴)
71, 5, 63syl 18 . . . . 5 (𝜑𝐹:𝐵1-1𝐴)
8 ssrab2 3650 . . . . 5 {𝑦𝐵𝜒} ⊆ 𝐵
9 f1ores 6064 . . . . 5 ((𝐹:𝐵1-1𝐴 ∧ {𝑦𝐵𝜒} ⊆ 𝐵) → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}))
107, 8, 9sylancl 693 . . . 4 (𝜑 → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}))
11 f1oresrab.1 . . . . . . 7 𝐹 = (𝑥𝐴𝐶)
1211mptpreima 5545 . . . . . 6 (𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝐶 ∈ {𝑦𝐵𝜒}}
13 f1oresrab.3 . . . . . . . . . 10 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))
14133expia 1259 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑦 = 𝐶 → (𝜒𝜓)))
1514alrimiv 1842 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑦(𝑦 = 𝐶 → (𝜒𝜓)))
16 f1of 6050 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
1811fmpt 6289 . . . . . . . . . 10 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
1917, 18sylibr 223 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
2019r19.21bi 2916 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝐵)
21 elrab3t 3330 . . . . . . . 8 ((∀𝑦(𝑦 = 𝐶 → (𝜒𝜓)) ∧ 𝐶𝐵) → (𝐶 ∈ {𝑦𝐵𝜒} ↔ 𝜓))
2215, 20, 21syl2anc 691 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 ∈ {𝑦𝐵𝜒} ↔ 𝜓))
2322rabbidva 3163 . . . . . 6 (𝜑 → {𝑥𝐴𝐶 ∈ {𝑦𝐵𝜒}} = {𝑥𝐴𝜓})
2412, 23syl5eq 2656 . . . . 5 (𝜑 → (𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝜓})
25 f1oeq3 6042 . . . . 5 ((𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝜓} → ((𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}) ↔ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}))
2624, 25syl 17 . . . 4 (𝜑 → ((𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}) ↔ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}))
2710, 26mpbid 221 . . 3 (𝜑 → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓})
28 f1orescnv 6065 . . 3 ((Fun 𝐹 ∧ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}) → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
294, 27, 28syl2anc 691 . 2 (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
30 rescnvcnv 5515 . . 3 (𝐹 ↾ {𝑥𝐴𝜓}) = (𝐹 ↾ {𝑥𝐴𝜓})
31 f1oeq1 6040 . . 3 ((𝐹 ↾ {𝑥𝐴𝜓}) = (𝐹 ↾ {𝑥𝐴𝜓}) → ((𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒}))
3230, 31ax-mp 5 . 2 ((𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
3329, 32sylib 207 1 (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540  cmpt 4643  ccnv 5037  cres 5040  cima 5041  Fun wfun 5798  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812
This theorem is referenced by:  wlknwwlknvbij  26268  clwwlkvbij  26329  rabfodom  28728  fpwrelmapffs  28897  eulerpartlemn  29770  wlksnwwlknvbij  41114  clwwlksvbij  41229
  Copyright terms: Public domain W3C validator