Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eupth2lem1 Structured version   Visualization version   GIF version

Theorem eupth2lem1 41386
 Description: TODO-AV: Duplicate of eupath2lem1 26504! Lemma for eupath2 26507. (Contributed by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
eupth2lem1 (𝑈𝑉 → (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))

Proof of Theorem eupth2lem1
StepHypRef Expression
1 eleq2 2677 . . 3 (∅ = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → (𝑈 ∈ ∅ ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵})))
21bibi1d 332 . 2 (∅ = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → ((𝑈 ∈ ∅ ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))) ↔ (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)))))
3 eleq2 2677 . . 3 ({𝐴, 𝐵} = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → (𝑈 ∈ {𝐴, 𝐵} ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵})))
43bibi1d 332 . 2 ({𝐴, 𝐵} = if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) → ((𝑈 ∈ {𝐴, 𝐵} ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))) ↔ (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)))))
5 noel 3878 . . . 4 ¬ 𝑈 ∈ ∅
65a1i 11 . . 3 ((𝑈𝑉𝐴 = 𝐵) → ¬ 𝑈 ∈ ∅)
7 simpl 472 . . . . 5 ((𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)) → 𝐴𝐵)
87neneqd 2787 . . . 4 ((𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)) → ¬ 𝐴 = 𝐵)
9 simpr 476 . . . 4 ((𝑈𝑉𝐴 = 𝐵) → 𝐴 = 𝐵)
108, 9nsyl3 132 . . 3 ((𝑈𝑉𝐴 = 𝐵) → ¬ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵)))
116, 102falsed 365 . 2 ((𝑈𝑉𝐴 = 𝐵) → (𝑈 ∈ ∅ ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
12 elprg 4144 . . 3 (𝑈𝑉 → (𝑈 ∈ {𝐴, 𝐵} ↔ (𝑈 = 𝐴𝑈 = 𝐵)))
13 df-ne 2782 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
14 ibar 524 . . . 4 (𝐴𝐵 → ((𝑈 = 𝐴𝑈 = 𝐵) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
1513, 14sylbir 224 . . 3 𝐴 = 𝐵 → ((𝑈 = 𝐴𝑈 = 𝐵) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
1612, 15sylan9bb 732 . 2 ((𝑈𝑉 ∧ ¬ 𝐴 = 𝐵) → (𝑈 ∈ {𝐴, 𝐵} ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
172, 4, 11, 16ifbothda 4073 1 (𝑈𝑉 → (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴𝐵 ∧ (𝑈 = 𝐴𝑈 = 𝐵))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∅c0 3874  ifcif 4036  {cpr 4127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator