Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeu Structured version   Visualization version   GIF version

Theorem eqeu 3344
 Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
eqeu ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem eqeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21spcegv 3267 . . . 4 (𝐴𝐵 → (𝜓 → ∃𝑥𝜑))
32imp 444 . . 3 ((𝐴𝐵𝜓) → ∃𝑥𝜑)
433adant3 1074 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑥𝜑)
5 eqeq2 2621 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
65imbi2d 329 . . . . . 6 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
76albidv 1836 . . . . 5 (𝑦 = 𝐴 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝐴)))
87spcegv 3267 . . . 4 (𝐴𝐵 → (∀𝑥(𝜑𝑥 = 𝐴) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
98imp 444 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
1093adant2 1073 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
11 eu3v 2486 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
124, 10, 11sylanbrc 695 1 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∃!weu 2458 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175 This theorem is referenced by:  rngurd  29119  neibastop3  31527  upixp  32694  zrinitorngc  41792  zrtermorngc  41793  zrtermoringc  41862
 Copyright terms: Public domain W3C validator