Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngurd Structured version   Visualization version   GIF version

Theorem rngurd 29119
Description: Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.)
Hypotheses
Ref Expression
rngurd.b (𝜑𝐵 = (Base‘𝑅))
rngurd.p (𝜑· = (.r𝑅))
rngurd.z (𝜑1𝐵)
rngurd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
rngurd.j ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
Assertion
Ref Expression
rngurd (𝜑1 = (1r𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, 1   𝑥, ·   𝜑,𝑥

Proof of Theorem rngurd
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2610 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2610 . . 3 (1r𝑅) = (1r𝑅)
41, 2, 3dfur2 18327 . 2 (1r𝑅) = (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
5 rngurd.z . . . 4 (𝜑1𝐵)
6 rngurd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
75, 6eleqtrd 2690 . . 3 (𝜑1 ∈ (Base‘𝑅))
8 rngurd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
9 rngurd.j . . . . . 6 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
108, 9jca 553 . . . . 5 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
1110ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
12 rngurd.p . . . . . . . . 9 (𝜑· = (.r𝑅))
1312adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → · = (.r𝑅))
1413oveqd 6566 . . . . . . 7 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = ( 1 (.r𝑅)𝑥))
1514eqeq1d 2612 . . . . . 6 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
1613oveqd 6566 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = (𝑥(.r𝑅) 1 ))
1716eqeq1d 2612 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑥 · 1 ) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
1815, 17anbi12d 743 . . . . 5 ((𝜑𝑥𝐵) → ((( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
196, 18raleqbidva 3131 . . . 4 (𝜑 → (∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
2011, 19mpbid 221 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))
216eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑒𝐵𝑒 ∈ (Base‘𝑅)))
2213oveqd 6566 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑒 · 𝑥) = (𝑒(.r𝑅)𝑥))
2322eqeq1d 2612 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(.r𝑅)𝑥) = 𝑥))
2413oveqd 6566 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑥 · 𝑒) = (𝑥(.r𝑅)𝑒))
2524eqeq1d 2612 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(.r𝑅)𝑒) = 𝑥))
2623, 25anbi12d 743 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
276, 26raleqbidva 3131 . . . . . . . 8 (𝜑 → (∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
2821, 27anbi12d 743 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))))
298ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
3029adantr 480 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
31 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
32 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → 𝑥 = 𝑒)
3332oveq2d 6565 . . . . . . . . . . . . 13 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → ( 1 · 𝑥) = ( 1 · 𝑒))
3433, 32eqeq12d 2625 . . . . . . . . . . . 12 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 · 𝑒) = 𝑒))
3531, 34rspcdv 3285 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (∀𝑥𝐵 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑒) = 𝑒))
3630, 35mpd 15 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ( 1 · 𝑒) = 𝑒)
3736adantrr 749 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 𝑒)
385adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 1𝐵)
39 simprr 792 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))
40 oveq2 6557 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑒 · 𝑥) = (𝑒 · 1 ))
41 id 22 . . . . . . . . . . . . . 14 (𝑥 = 1𝑥 = 1 )
4240, 41eqeq12d 2625 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒 · 1 ) = 1 ))
43 oveq1 6556 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑥 · 𝑒) = ( 1 · 𝑒))
4443, 41eqeq12d 2625 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑥 · 𝑒) = 𝑥 ↔ ( 1 · 𝑒) = 1 ))
4542, 44anbi12d 743 . . . . . . . . . . . 12 (𝑥 = 1 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 )))
4645rspcva 3280 . . . . . . . . . . 11 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 ))
4746simprd 478 . . . . . . . . . 10 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ( 1 · 𝑒) = 1 )
4838, 39, 47syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 1 )
4937, 48eqtr3d 2646 . . . . . . . 8 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 𝑒 = 1 )
5049ex 449 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → 𝑒 = 1 ))
5128, 50sylbird 249 . . . . . 6 (𝜑 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
5251alrimiv 1842 . . . . 5 (𝜑 → ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
53 eleq1 2676 . . . . . . 7 (𝑒 = 1 → (𝑒 ∈ (Base‘𝑅) ↔ 1 ∈ (Base‘𝑅)))
54 oveq1 6556 . . . . . . . . . 10 (𝑒 = 1 → (𝑒(.r𝑅)𝑥) = ( 1 (.r𝑅)𝑥))
5554eqeq1d 2612 . . . . . . . . 9 (𝑒 = 1 → ((𝑒(.r𝑅)𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
56 oveq2 6557 . . . . . . . . . 10 (𝑒 = 1 → (𝑥(.r𝑅)𝑒) = (𝑥(.r𝑅) 1 ))
5756eqeq1d 2612 . . . . . . . . 9 (𝑒 = 1 → ((𝑥(.r𝑅)𝑒) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
5855, 57anbi12d 743 . . . . . . . 8 (𝑒 = 1 → (((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
5958ralbidv 2969 . . . . . . 7 (𝑒 = 1 → (∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
6053, 59anbi12d 743 . . . . . 6 (𝑒 = 1 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))))
6160eqeu 3344 . . . . 5 (( 1 ∈ (Base‘𝑅) ∧ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ∧ ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
627, 7, 20, 52, 61syl121anc 1323 . . . 4 (𝜑 → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
6360iota2 5794 . . . 4 (( 1𝐵 ∧ ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
645, 62, 63syl2anc 691 . . 3 (𝜑 → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
657, 20, 64mpbi2and 958 . 2 (𝜑 → (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 )
664, 65syl5req 2657 1 (𝜑1 = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  ∃!weu 2458  wral 2896  cio 5766  cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  1rcur 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgp 18313  df-ur 18325
This theorem is referenced by:  ress1r  29120
  Copyright terms: Public domain W3C validator